
Processing Titration Results

Chemistry - Triple Science - Key Stage 4

Periodic Table of Elements

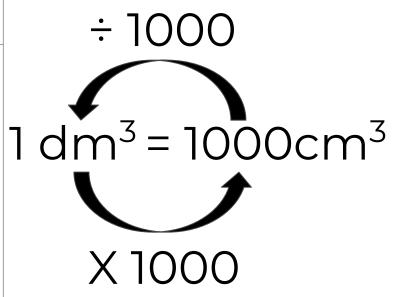
Source: Oak

Titration method

7.	Fill the	with acid.		
2.	Use a	to me	easure 25cm³ c	of alkali into the conical flask.
3.	Add an	to the a	lkali.	
4.	Take the initial r	reading or	n the	
5.	Add the acid to	the alkali	while	the conical flask.
6.	Stop adding the	e acid whe	en the indicate	or changes colour. Record
	the final reading	g on the k	ourette - This is	s your rough titration.
7.	Repeat the titra	tion this t	time adding	near the end point.
8.	Repeat until		results are ach	nieved.

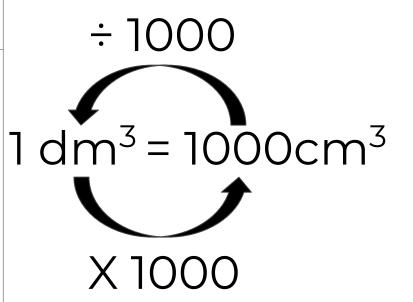
Processing titration results

	7	2	3	4
Final volume (cm ³)	23.45	45.70	22.60	44.70
Initial volume (cm ³)	0.00	23.45	0.00	22.40
Titre (cm³)				


Processing titration results

	1	2	3	4
Final volume (cm ³)	23.45	45.70	22.60	44.70
Initial volume (cm ³)	0.00	23.45	0.00	22.40
Titre (cm ³)	23.45	22.25	22.60	22.30

Moles, concentration and volume


	A solution had a volume of 25cm ³ and a concentration of 0.125 mol/dm ³ . Calculate the number of moles in this solution.
Values	
E quation	
S ubstitute	
Rearrange	
Answer	
Units	

Moles, concentration and volume

	A solution had a volume of 50cm ³ and a concentration of 0.275 mol/dm ³ . Calculate the number of moles in this solution.
Values	
E quation	
S ubstitute	
Rearrange	
Answer	
Units	

Titration calculation

A student added 25cm³ of an unknown concentration of sodium hydroxide into a conical flask. They carried out a titration using 0.100 mol/dm³ of hydrochloric acid. The mean volume of hydrochloric acid needed to exactly neutralise the acid was 26.50cm³. Calculate the concentration of the sodium hydroxide.

Titration calculation

A student added 25cm³ of 0.150mol/dm³ of sodium hydroxide into a conical flask. They carried out a titration using an unknown concentration of of citric acid. The results of the titration are shown below. Calculate the concentration of the citric acid.

$$C_6H_8O_7 + 3NaOH \rightarrow C_6H_5O_7Na_3 + 3H_2O$$

	Titration 1	Titration 2	Titration 3	Titration 4	Titration 5
Volume of $C_6H_8O_7$ added in cm^3	12.50	11.10	10.20	10.15	10.15

Independent task

A student titrated 25cm³ of 0.075 mol/dm³ of sodium hydroxide with an unknown concentration of sulfuric acid. The mean volume of sulfuric acid added was 17.55cm³. Calculate the concentration of the sulfuric acid solution.

$$2 \text{ NaOH} + \text{H}_2\text{SO}_4 \rightarrow \text{Na}_2\text{SO}_4 + 2 \text{H}_2\text{O}$$

- Calculate moles of sodium hydroxide using moles = concentration x volume (remember to make sure your volume is in dm³)
- 2. Use the ratio from the balanced equation to work out moles of H_2SO_4
- 3. Calculate the concentration of H_2SO_4 using concentration = moles/volume (remember to make sure your volume is in dm³)

Independent task answer

$$2 \text{ NaOH} + \text{H}_2\text{SO}_4 \rightarrow \text{Na}_2\text{SO}_4 + 2 \text{H}_2\text{O}$$

Moles (NaOH) = concentration x volume

 $25cm^3 = 0.025dm^3$

Moles NaOH = $0.075 \times 0.025 = 1.875 \times 10^{-5}$ (0.00001875)

Independent task answer

Ratio of NaOH:HCl 2:1

So moles of HCl = $1.875 \times 10^{-5} / 2 = 9.375 \times 10^{-6}$

Concentration (HCI) = moles/volume

Volume of HCl = 17.55cm³ so 0.01755dm³

Concentration = $9.375 \times 10^{-6} / 0.01755 = 5.3 \times 10^{-4} \, \text{mol/dm}^3$

Independent task

A student carried out a titration using 25cm³ of 0.200 mol/dm³ HCl. NaOH was end to the HCl and the volume needed to neutralise the HCl was recorded. Use the results of the titration to calculate the concentration of NaOH. NaOH + HCl \rightarrow NaCl + H₂O

	Titration 1	Titration 2	Titration 3	Titration 4	Titration 5
Volume of NaOH added in cm ³	12.50	11.10	10.20	10.15	10.15

- 1. Calculate moles of HCl using moles = concentration x volume (remember to make sure your volume is in dm^3)
- 2. Use the ratio from the balanced equation to work out moles of NaOH
- 3. Calculate the mean volume of NaOH using the concordant results from the titration.
- 4. Calculate the concentration of HCl using concentration = moles/volume (remember to make sure your volume is in dm³)

Independent task answer

- 1. Moles (HCl) = $0.200 \times 0.025 = 5 \times 10^{-3}$
- 2. Ratio HCl:NaOH 1:1 so moles of NaOH = $5x10^{-3}$
- 3. Mean volume of NaOH = 10.15cm³
- 4. Concentration of NaOH = $5 \times 10^{-3} / 0.01015 = 0.493 \text{ mol/dm}^{-3}$

