Physics - Key Stage 4 - Forces

Physics Only Review

Mr Saville

Independent Practice

1) A crane applies a 8 kN force on a load that is 40 m from the pivot. Calculate the moment of the force.
2) A boy with a weight of 680 N sits on a seesaw 140 cm away from the pivot. Calculate the moment of the force.
3) A force of 7.4 kN is applied on a load that is 244 cm away from the pivot. Calculate the moment of the force.
4) A fork-lift truck with a load of 2 kN causes a moment of 8000 Nm . Calculate the distance from the pivot.
5) A spanner tightens a bolt with a moment of 320 Nm . Calculate the force needed to loosen the bolt when you hold the spanner 40 cm away from the pivot.

The crane is balanced. The weight of the counterweight is 4000 N . What is the weight of the load?

Credit: no attribution required

Clockwise moment = Anticlockwise moment Force x distance = Force x distance

Independent Practice

1. A force of 800 N is applied to a gear (A) wheel of radius 0.25 m to turn another gear (B)wheel of radius 0.5 m radius. Calculate the moment of each gear.
2. A force of 1250 N is applied to a gear (A) wheel of radius 1 m to turn another gear (B) wheel of radius 0.5 m radius. Calculate the moment of each gear.
3. A force of 270 N is applied to a gear (A) wheel of radius 0.10 m to turn another gear (B) wheel of radius 0.5 m radius. Calculate the moment of each gear.

Independent work

1.Describe how gear systems work.
2.Explain how the force can be multiplied by a gear system.
3. How much will a 24 : 12 gear ratio
a)speed up the rotation?)
b) multiply the moment (careful)

HT ONLY - Independent Practice

1.A large dam has a wall of 120 m . What is the pressure at the bottom of the dam? ($\mathrm{g}=9.8 \mathrm{~N} / \mathrm{kg}$ and density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$)
2.A glass of water is 20 cm tall. What is the pressure at the bottom of the glass?
3. A diver experiences a pressure of 620000 Pa. At what depth is the diver at? $(g=9.8 \mathrm{~N} / \mathrm{kg}$ and density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$)
4. A diver experiences 320000 Pa of pressure on his body. If the density of seawater is 1025 $\mathrm{kg} / \mathrm{m}^{3}$, then how deep is he swimming? $(\mathrm{g}=9.8 \mathrm{~N} / \mathrm{kg})$

HT ONLY - Independent Practice

1. A bus travelling at $20 \mathrm{~m} / \mathrm{s}$ collides with a stationary lorry. The bus has a mass of $15,000 \mathrm{~kg}$ and the lorry has a mass of $10,000 \mathrm{~kg}$. If the final velocity of the bus is $0 \mathrm{~m} / \mathrm{s}$, what is the final velocity of the lorry?

$0 \mathrm{~m} / \mathrm{s}$

10,000
kg

$0 \mathrm{~m} / \mathrm{s}$
15,000
kg

$$
V=?
$$

10,000
kg

1. Two buses, each with a mass of $20,000 \mathrm{~kg}$ collide head-on. Before the collision bus 1 had a velocity of $20 \mathrm{~m} / \mathrm{s}$ and bus 2 had a velocity of $16 \mathrm{~m} / \mathrm{s}$. If bus 1 has a final velocity of $0 \mathrm{~m} / \mathrm{s}$, what is the final velocity of bus 2 ?

Independent Practice

1. Find the force needed to cause a change in the momentum of a fly by $0.6 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$ in 1.2 s .
2. Find the force need to cause a change in momentum of a car by $2000 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$ in 5 seconds.
3. Calculate the change in momentum on a car that exerts a 800 N force when stopping the car in 3 seconds.
4. In a car safety test collision with a wall, a car with a mass of 1250 kg stopped completely in 0.05 s . If the force exerted by the wall was $2.5 \times 10^{5} \mathrm{~N}$, how fast was the car travelling initially?
