
Lesson 5: Structured Programming

Programming Part 4: Subroutines

Computing

Ben Garside

 Materials from the Teach Computing Curriculum created by the National Centre for Computing Education11

Task 1 - Improve the code - worked example

2

Code before

1
2
3
4
5
6
7

to_guess = 3
not_guessed = True
while not_guessed:
 print("Guess a number")
 number = int(input())
 if number == to_guess:
 break

Code after

1
2
3
4
5
6
7

to_guess = 3
not_guessed = True
while not_guessed:
 print("Guess a number")
 number = int(input())
 if number == to_guess:
 not_guessed = False

Task 1 - Improve the code - instructions

3

Improve the code that you will find over the next three slides.

● Copy and paste the ‘before’ code into your development environment.
● Edit the code so that the block only has 1 entry point and 1 exit point.
● Paste the improved code into the ‘after’ box

Note: The program should perform in exactly the same when when
executed

Tip: Use the worked example on the previous slide as a guide

Task 1 - Improve the code - 1

4

Code before Code after (your solution)

1
2
3
4
5
6
7
8
9
10
11

def and_function(a, b):
 if a == True and b == True:
 return True
 else:
 return False

one = 4 == 4
two = 2 == 2

print(and_function(one, two))

1
2
3
4
5
6
7
8
9
10
11

Task 1 - Improve the code - 2

5

Code before Code after (your solution)

1
2
3
4
5
6
7

def multiple_five(number):
 if number % 5 == 0:
 return "Multiple of 5"
 else:
 return "Not a multiple of 5"

print(multiple_five(12))

1
2
3
4
5
6
7
8

Task 1 - Improve the code - 3

6

Code before

Place your code on
the next slide

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

def password_check():
 password = "12345"
 entered_pass = ""
 pass_not_valid = password != entered_pass
 attempts = 0
 while pass_not_valid and attempts < 3:
 print("Enter a password:")
 entered_pass = input()
 attempts = attempts + 1
 if password == entered_pass:
 break
 if password != entered_pass:
 return "Access Denied"
 else:
 return "Access Granted"

print(password_check())

Task 1 - Improve the code - 3

7

Code solution

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Task 2 - Structure chart - instructions

The next slide contains an incomplete structure chart for the dog walking weekly invoice program.
Decide on the interface requirements for each subroutine.

Program description

A dog walker would like a program that provides a weekly invoice for their clients based on the
number of dogs, the number of walks and the cost per walk. The program should allow the user
to:

● Enter the number of dogs the client has
● Enter the number of days they have walked the dogs
● Calculate the number of walks based on number of dogs x number of days
● Calculate the total cost based on number of walks x 4.00
● Display the relevant invoice information: Number of dogs, number of days, total number of

walks, total cost

8

Structure chart: solution

identifier
num_walks

parameters
total_dogs,
total_days

return
total_walks

identifier

parameters

return

identifier

parameters

return

identifier

parameters

return

identifier

parameters

9

Dog walking
weekly invoice

Number of dogs Number of days
walked

Total number of
walks Total charge Invoice

Important points

● Not all subroutines will require parameters
● Not all subroutines will require a return

value

Task 3 - Complete the program
Open the partially completed code here (oaknat.uk/comp-ks4-dogstart) or copy and paste the
code below into your development environment.

10

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

23

def num_dogs():

 return total_dogs

def num_days():

 return total_days

def num_walks(total_dogs, total_days):

 return total_walks

def total_charge(total_walks):

 return total_cost

def invoice(total_dogs, total_days, total_walks, total_cost):

total_dogs = num_dogs()
total_days = num_days()
total_walks = num_walks(total_dogs,total_days)
total_cost = total_charge(total_walks)
invoice(total_dogs, total_days, total_walks, total_cost)

https://www.google.com/url?q=http://oaknat.uk/comp-ks4-dogstart&sa=D&source=editors&ust=1677152692224088&usg=AOvVaw1PdFn2aDqWvXjA1ViW0s3s

Task 3 - testing the program
If your program works correctly then the following input and output should perform as
expected.

11

Example: (✔ if it was successful)
Note: Use this example to check your program. This is the output your program should produce for the given
input.

✔

A message is displayed to prompt
the user

Number of dogs for this client:

The user enters a value 3

A message is displayed to prompt
the user

How many days has the dog been walked?

The user enters a value 4

The program calculates the total
cost and displays the invoice to
the user

Number of dogs: 3
Number of days walked: 4
Total number of walks: 12
Total cost: 48.0

