Lesson 2b - Moments and Balance

Physics-KS3

Forces in Action

Mrs Wolstenholme

Reminder:

Two options to make a moment bigger

Make my force large

Make the perpendicular distance from my force to the pivot bigger

Credit: no attribution required

What can I do to increase the moment?

Option 1

Move the force closer to the pivot

Option 3

Move the force further away from the pivot

Option 2

Move the force up

Option 4

Move the force down

What can I do to decrease the moment?

Option 1

Move the force closer to the pivot

Option 3

Move the force further away from the pivot

Option 2

Move the force up

Option 4

Move the force down

If I push further away from the pivot the moment is

Option 1

smaller

Option 3

larger

Option 2
the same

Option 4
zero

If I push closer to the pivot the moment is

Option 1

smaller

Option 3

larger

Option 2

the same

$$
\text { Option } 4
$$

zero

Q1. The diagram shows a crane lifting a load. The counterweight and the load are balanced.
(a) The load is moved away from the pivot, to the right.
(i) What happens to the turning moment produced by the load?
(ii) What should happen to the counterweight to keep the arm balanced?

The seesaw is balanced. What is the weight of the animal on the left?

Reminder

Moment $=$ Force \times Perpendicular Distance
Balanced : Clockwise Moment = Anticlockwise Moment

The seesaw is balanced. What is the weight of the animal on the left?

Clockwise moment = Anticlockwise moment

Credit: no attribution required

The seesaw is balanced. What is the weight of the animal on the left?

Clockwise moment = Anticlockwise moment Force x distance $=$ Force x distance

Credit: no attribution required

What is the next step?

Weight $\times 4=400$

Option 1

Weight $\times 4 \times 4=400 \times 4$

Option 3

Weight $\times 4 \div 4=400 \times 4$

Option 2

Weight $\times 4 \div 4=400 \div 4$

Option 4

PANIC!!

What is the next step?

```
Force x2 = 600
```


Option 1

Force $x 2 \div 2=600 \div 2$

Option 3

Force $\times 2 \div 3=600 \div 3$

Option 2

Force $\times 2 \times 2=600 \times 2$

Option 4

PANIC!!

What is the next step?

$450=$ Push $\times 10$

Option 1

$450 \times 10=$ Push $\times 10 \times 10$

Option 3

$450 \div 450=$ Push $\times 10 \div 450$

Option 2

$450 \div 10=$ Push $\times 10 \div 10$

Option 4

PANIC!!

The apple has a weight of 30 N and is 40 cm away from the pivot? What force would I have to push the bar with 30 cm from the pivot to balance the bar?

Clockwise moment = Anticlockwise moment Force x distance $=$ Force x distance

The seesaw is balanced. How far away from the pivot is the animal on the left?

Clockwise moment = Anticlockwise moment

The apple has a weight of 30 N and is 40 cm away from the pivot? How far from the pivot should I push with a force of 20N to balance the bar?

Credit: no attribution required

1) The weight of child A is 100 N. How far away from the pivot is child A sitting if the seesaw is balanced?
2) A balanced crane uses a 1500 N counterweight which is 1 m from the pivot. What is the weight of the load lifted 3 m from the pivot?

See video for diagrams

More Practice

Question 1: A load of 100 N is positioned 2 metres to the left-hand side of a pivot. How far away would you have to place a 200 N load on the right-hand side of the pivot?

Question 2: A 150 N load is held 3 metres from a pivot. If the load is balanced by another load which is 1.5 metres away from the pivot, what force is needed to do this?

Question 3: Two pupils are sat on a seesaw. If the pupil on the left has a load of 45 N and is sat 2 metres away from the pivot, how far away must the other pupil sit if they have a load of 30 N ?

Question 4: A crane lifts a 4000 N block using an arm which is 20 metres in length. If the counterweight is 2 metres from the pivot, what force must the counterweight produce?

Answers

Question 1: A load of 100 N is positioned 2 metres to the left-hand side of a pivot. How far away would you have to place a 200 N load on the right-hand side of the pivot?

Credit: Priti Solanki


```
Anticlockwise moment = clockwise moment
100\times2 = 200 x distance
200 = 200 x distance
Distance = 1m
```

Question 2: A 150 N load is held 3 metres from a pivot. If the load is balanced by another load which is 1.5 metres away from the pivot, what force is needed to do this?


```
Anticlockwise moment = clockwise moment
150\times3 = Force x 1.5
450 = Force x }1.
Force = 300 N
```

Question 3: Two pupils are sat on a seesaw. If the pupil on the left has a load of 45 N and is sat 2 metres away from the pivot, how far away must the other pupil sit if they have a load of 30 N ?


```
Anticlockwise moment = clockwise moment
45 x 2 = 30 x distance
90=30 x distance
Distance = 3 m
```

Question 4: A crane lifts a 4000 N block using an arm which is 20 metres in length. If the counterweight is 2 metres from the pivot, what force must the counterweight produce?

Credit: Priti Solanki


```
Anticlockwise moment = clockwise moment
4000 x 10 = Force x 2
40000 = Force x 2
Force = 20000
```

