Combined Science - Chemistry - Key Stage 4

Energy Changes

Review Lesson

Mrs. Begum

Energy changes

Activation energy: The minimum amount of energy needed to start a reaction.

Combustion: An exothermic reaction in which a fuel is oxidised.

Endothermic reaction: A reaction in which more energy is required to break bonds than is released when bonds are made.

Evaluate: Give the advantages and disadvantages of something. If given data or information to use, explain why this is an advantage.

Exothermic reaction: A reaction in which more energy is released when bonds are made than is required to break bonds in the reactants.

Insulator: A material that does not conduct heat well so will reduce energy transfers.

Neutralisation: A type of chemical reaction where acids are neutralised and energy is released.

Independent task 1 - variables

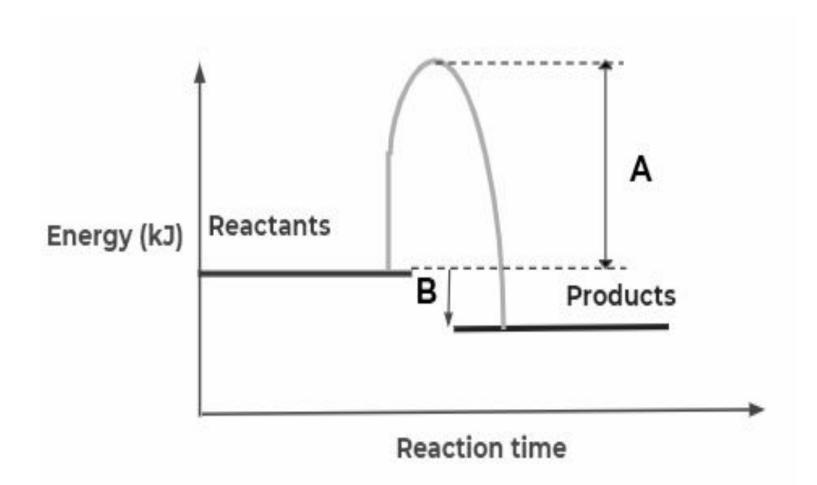
- 1. What is an independent variable?
- 2. What are control variables?
- 3. What is a dependent variable?
- 4. What equipment can be used to make sure that heat is not lost to the surrounding?
- 5. Why do we do repeats?

Independent task 1 - variables - answers

- 1. What is an independent variable? The variable that you change
- 2. What are control variables? The variables that you keep the same
- 3. What is a dependent variable? The variable that you measure
- 4. What equipment can be used to make sure that heat is not lost to the surrounding? Polystyrene cup or insulation around a beaker or a lid
- 5. Why do we do repeats? To identify anomalies and calculate the mean

Independent task 2

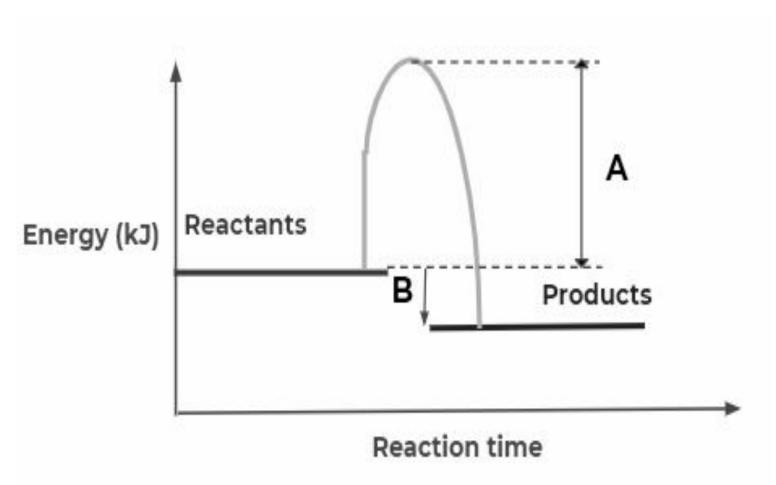
- 1. Is bond making endothermic or exothermic?
- 2. Is bond breaking endothermic or exothermic?
- 3. What is activation energy?
- 4. Why is a reaction overall exothermic?
- 5. Why is a reaction overall endothermic?



Independent task 2 answers

- 1. Is bond making endothermic or exothermic? Exothermic
- 2. Is bond breaking endothermic or exothermic? Endothermic
- 3. What is activation energy? The minimum energy needed to start a reaction
- 4. Why is a reaction overall exothermic? **More energy has been released during** bond making than has been used for bond breaking
- 5. Why is a reaction overall endothermic? **More energy has been used during** bond breaking than has been released during bond making

Exam style question 1


Figure 1 shows the reaction profile diagram for the reaction between hydrogen and fluorine.

Questions

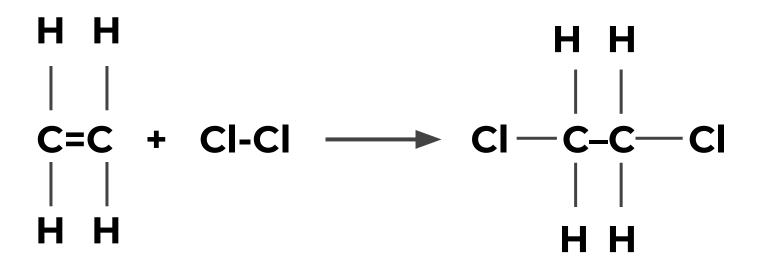
- 1. What do letters A and B represent?
- 2. What type of reaction is it? Explain how you know by the reaction profile.
- 3. Explain what is happening in terms of bond breaking and bond making.

Exam style question 1 answers

Figure 1 shows the reaction profile diagram for the reaction between hydrogen and fluorine.

Questions

- What do letters A and B represent? A = activation energy; B = overall energy change
- 2. What type of reaction is it? Explain how you know by the reaction profile. **Exothermic. The products have less energy than the reactants and the overall energy change is negative.**
- 3. Explain what is happening in terms of bond breaking and bond making. More energy has been released during bond making than has been used for bond breaking.


Exam style question

The equation for the reaction of ethene and chlorine is:

$$C_2H_4 + Cl_2 \longrightarrow C_2H_4Br_2$$

The reaction is exothermic.

The reaction can be represented as:

Bond	Energy (kJ/mol)
C-C	348
C=C	614
С–Н	413
C-CI	328
CI-CI	242

Question

Use the bond energy values in the table to show that the overall energy change is -148 kJ/mol.

Exam style question 2 answers

Bonds broken 614 + (4 x413) + 242 = 2508 kJ/mol

Bonds made 342 + (4 x 413) + (2 x 328) = 2656 kJ/mol

Bond	Energy (kJ/mol)
C-C	348
C=C	614
C-H	413
C–Cl	328
CI–CI	242

Question

Use the bond energy values in the table to show that the overall energy change is -148 kJ/mol.

Overall energy =2508 - 2656 Overall = -148 kJ

