Calculations with Waves

Combined Science - Physics - Key stage 4 - Waves

Mr Benyohai

Measuring wavelength and amplitude

> Credit: Mr Benyohai

Measuring period

Credit: Mr Benyohai

The relationship between period and frequency

Worked example

Calculate the period when the frequency is 4 Hz

Shared example

	A water wave has a frequency of 0.5 Hz. Calculate the period.	A water wave has a frequency of 12 mHz. Calculate the period.
Values		
Equation		
Substitute		
Rearrange		
Answer		
Units		

Independent practice

1. Calculate the time period when the frequency is:
a. 4 Hz
b. 25 Hz
f. 3.45 kHz
g. 0.5 MHz
h. 150 mHz
i. 0.2 Hz
j. $14.3 \times 10^{-6} \mathrm{~Hz}$

Worked example

Calculate the frequency when the period is 2 minutes

Shared example

	A water wave has a period of $0.5 \mu \mathrm{s}.$. Calculate the frequency.	A water wave has a period of 0.1 ms. Calculate the frequency.
Values		
Equation		
Substitute		
Rearrange		
Answer		

Independent practice

1. Calculate the frequency when the time period is:
a. 0.5 seconds
b. 7 seconds
c. 0.01 seconds
d. 5 milliseconds
e. $34.5 \mu \mathrm{~s}$
f. 2 ns
g. 1 minute
h. 30 minutes
i. 2 hours
j. 2 minutes 25 seconds

Measuring period and calculating frequency

Calculating wave speed

$v=f \times \lambda$

Symbol	Quantity	Units	Unit Symbol
V			
f			
λ			

Worked example

A wave generator with a frequency of 50 Hz produces water waves with a wavelength of 20 cm . What is the wave speed?

Shared example

	If a wave has a frequency of 5 Hz and has a wavelength of 2 m, what is the wave speed?	A generator with a frequency of 50 Hz produces water waves with a wavelength of 3 m. What is the wave speed?
Values		
Equation		
Substitute		
Rearrange		
Answer		
Units		

Independent practice

1. What is the wave speed if:
a. $f=5 \mathrm{~Hz}, \lambda=1 \mathrm{~m}$
b. $f=6 \mathrm{~Hz}, \lambda=0.25 \mathrm{~m}$
c. $f=13 \mathrm{kHz}, \lambda=25 \mathrm{~m}$
2. A sound wave in steel with a frequency of 500 Hz and a wavelength of 3.0 metres. What is its speed?
3. a ripple on a pond with a frequency of 2 Hz and a wavelength of 0.4 metres. What is the wave speed?
4. A radio wave with a wavelength of 30 m and a frequency of 10,000,000 hertz. What is the wave speed?

Worked example

Sound has a speed of $330 \mathrm{~m} / \mathrm{s}$. Calculate the wavelength of the sound from a siren with a frequency of 3400 Hz .

Shared example

	A sound wave of wavelength 10 metres travelling at 340 metres per second in air. What is its frequency?	A wave on a slinky spring with a frequency of 0.9 mHz travelling at $3 \mathrm{~m} / \mathrm{s}$. What is its wavelength?
Values		
Equation		
Substitute		
Rearrange		
Answer		

Independent practice

1. What is the frequency if:
a. $v=2 \mathrm{~m} / \mathrm{s}, \lambda=1 \mathrm{~m}$
b. $v=4 \mathrm{~km} / \mathrm{s}, \lambda=3 \mathrm{~m}$
c. $v=6 \mathrm{~cm} / \mathrm{s}, \lambda=50 \mathrm{~cm}$
2. What is the wavelength if:
a. $v=2 \mathrm{~m} / \mathrm{s}, \mathrm{f}=4 \mathrm{~Hz}$
b. $v=34 \mathrm{~mm} / \mathrm{s}, f=40 \mathrm{~Hz}$
c. $v=12 \mathrm{~cm} / \mathrm{s}, \mathrm{f}=25 \mathrm{MHz}$
3. A train whistle has a frequency of 2 kHz and the speed of sound is $330 \mathrm{~m} / \mathrm{s}$. What is its wavelength?
4. A radio station has a wavelength of 1500 m . The speed of radio waves is $300000000 \mathrm{~m} / \mathrm{s}$. What is the frequency of the radio transmissions?
