Le Chatelier's Principle: Effect of Changing Pressure (Higher Tier) Worksheet

Combined Science - Chemistry - Key Stage 4
The Rate and Extent of Chemical Change

Dr Deng

Recap: Le Chatelier's principle

The forward reaction is exothermic for the following reaction:

$$
A+B \rightleftharpoons C+D
$$

- What would happen if we increase concentration of B ?
- What would happen if I heat this?
- Why?
- What would happen if I cool this?
- Why?

Recap: Le Chatelier's principle

The forward reaction is exothermic for the following reaction:

$$
A+B \rightleftharpoons C+D
$$

- What would happen if we increase concentration of B ?

Equilibrium shifts to the right to use up B

- What would happen if I heat this? Equilibrium shifts to the left
- Why? Increasing temperature favours endothermic reaction
- What would happen if I cool this? Equilibrium shifts to the right
-Why? Decreasing temperature favours exothermic reaction

Effect of changing pressure on equilibrium

In a reaction involving gases, if the pressure is decreased, the position of the equilibrium shifts in the direction of more molecules of gas.

What happens to the equilibrium if we increase pressure?

$$
\mathrm{A}_{(\mathrm{g})}+\mathrm{B}_{(\mathrm{g})} \rightleftharpoons \mathrm{C}_{(\mathrm{g})}
$$

Effect of changing pressure on equilibrium

In a reaction involving gases, if the pressure is decreased, the position of the equilibrium shifts in the direction of more molecules of gas.

What happens to the equilibrium if we increase pressure?

Equilibrium shifts to the left, decreasing pressure favours the side with more moles, decreasing C.

Effect of changing pressure on equilibrium

What happens to the yield of product D if we increase pressure?

$$
\mathrm{A}_{(\mathrm{g})}+\mathrm{B}_{(\mathrm{g})} \rightleftharpoons \mathrm{C}_{(\mathrm{g})}+\mathrm{D}_{(\mathrm{g})}
$$

Effect of changing pressure on equilibrium

What happens to the yield of product D if we increase pressure?

Yield does not change. There are the same number of gaseous moles on both sides of the equation.

Multiple choice quiz

For a fixed mass of gas, what happens to the gas particles when pressure is increased?

A

Get further apart

Become smaller

B

Get closer together

D

Become bigger

For a fixed mass of gas, what happens to the gas particles when pressure is increased?

Get closer together

For a fixed mass of gas, what happens to the volume of gas when pressure is increased?

A

Shifts to the left

Increases

B

Shifts to the right

D
Decreases

For a fixed mass of gas, what happens to the volume of gas when pressure is increased?

D

Decreases

Increasing pressure favours the side of the reaction with...

A

Fewer gaseous moles

Less energy

```
B
```

More gaseous moles

D

More energy

Increasing pressure favours the side of the reaction with...

A

Fewer gaseous moles

Decreasing pressure shifts the equilibrium to the side of the reaction with...

A

Fewer gaseous moles

Less energy

B

More gaseous moles

D

More energy

Decreasing pressure shifts the equilibrium to the side of the reaction with...

B

More gaseous moles

What effect does adding a catalyst have on the equilibrium of a reversible reaction?

A

Increases yield

Speeds up reverse rate of reaction

B

Speeds up forward rate of reaction

D

No effect

What effect does adding a catalyst have on the equilibrium of a reversible reaction?

D
No effect

Independent practice

What would happen to the position of the equilibrium in each case below if:
(a) Pressure is increased
(b) Pressure is decreased

1. $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$
2. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
3. $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{C}(\mathrm{s}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$
4. $2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$

Independent practice answer

What would happen to the position of the equilibrium in each case below if:
(a) Pressure is increased

1. $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$
2. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
3. $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{C}(\mathrm{s}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$
4. $2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$

Equilibrium shifts to the right
Equilibrium does not shift
Equilibrium shifts to the left
Equilibrium shifts to the right

Independent practice answer

What would happen to the position of the equilibrium in each case below if:
(b) Pressure is decreased

1. $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$
2. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
3. $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{C}(\mathrm{s}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$
4. $2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$

Equilibrium shifts to the left
Equilibrium does not shift
Equilibrium shifts to the right
Equilibrium shifts to the left

Exam style question

In the Haber process, ammonia is produced from nitrogen and hydrogen in the presence of an iron catalyst.

$$
\mathrm{N}_{2}(\mathrm{~g})+\ldots \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons _\mathrm{NH}_{3}(\mathrm{~g})
$$

The forward reaction is exothermic.
a) Balance the symbol equation. (2)
b) Explain the effect on the yield of ammonia if a high pressure is used. (2)
c) Explain the effect on the yield of ammonia if a high temperature is used. (2)
d) Explain how adding a catalyst speeds up this reaction. (2)

Exam style question answers

In the Haber process, ammonia is produced from nitrogen and hydrogen in the presence of iron catalyst.

$$
\mathrm{N}_{2}(\mathrm{~g})+\mathbf{3} \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathbf{2} \mathrm{NH}_{3}(\mathrm{~g})
$$

The forward reaction is exothermic.
a) Balance the symbol equation.
b) If a high pressure is used, equilibrium will shift to the right in the forward direction to the side with fewer moles. This increases the yield of ammonia.
c) If a high temperature is used, equilibrium will shift to the left. Increasing temperature favours endothermic reaction. This decreases the yield of ammonia.
d) The catalyst speeds up the reaction by lowering the activation energy and providing an alternative reaction pathway.

