Purity and Formulations Worksheet

Combined Science - Chemistry - Key Stage 4

C8 Analytical Chemistry

Mr Robbins

Periodic Table of Elements

^{*} The lanthanides (atomic numbers 58 - 71) and the Actinides (atomic numbers 90 - 103) have been omitted. Relative atomic masses for **Cu** and **Cl** have not been rounded to the nearest whole number.

- 1. A student pours some mineral water into a glass. Is it a pure or impure substance?
- 2. A student receives a bottle of pure ethanol. In their textbook it says that ethanol's boiling point is 78°C. What temperature will they have to heat it to in order to turn it into a gas?
- 3. They find that it starts to turn into a gas at 81 °C. What can they conclude about the ethanol's purity?
- 4. Ethanol is a simple molecular substance. Does it conduct electricity?
- 5. Explain your answer to the previous question.
- 6. A student wants to make a formulation of liquid chemicals X, Y and Z. First they take a small amount of Y and add it to X. Explain how the student could use the mixture's boiling point to prove that it is an impure substance.
- 7. There is a naturally occurring mixture of Y and Z that can be extracted from trees. A different student says that because it is natural it is a pure substance. Explain why the student is incorrect.
- 8. Explain why it is important that the student measures the volumes of X, Y and Z when mixing them together.
- 9. The resulting mixture can be separated back into X, Y and Z. Which process can be used for this separation?
- 10. Alloys can be considered as formulations. What is an alloy?
- 11. Explain why alloys are harder than pure metals.
- 12. A scientist wishes to make an alloy of iron and carbon for use as a car body. Explain why it is important that the scientist uses precise amounts of carbon when making the alloy.

- 1. Impure as it is a mixture of water and dissolved minerals
- 2. 78 °C
- 3. It is impure
- 4. No
- 5. No delocalised electrons or ions to flow
- 6. Its boiling point will be higher than pure X
- 7. It is wrong because it is a mixture s cannot be pure
- 8. To ensure they get the correct quantities for the formulation
- 9. Distillation
- 10. A mixture of a metal with another metal or carbon
- 11. The rows of metal ions are disrupted so they cannot slide past each other
- 12. Too much or too little will affect the malleability/ability to shape/properties of the metal

Quick check

- 1. What happens to the boiling point of an impure substance?
- 2. What happens to the melting point of an impure substance?

Independent task

- 1. Which of the halogens are liquid at room temperature (25 °C)?
- 2. Which are gases at room temperature?
- 3. Describe how we could determine the purity of a sample of iodine
- 4. Sketch a graph to show what will happen to the temperature of a pure sample of Astatine when it is heated from a starting temperature of 250 °C. Label the values of the melting and boiling point.

Halogen	Melting Point (°C)	Boiling Point (°C)
Fluorine	-220	-188
Chlorine	-101	-35
Bromine	-7.2	58.8
lodine	114	184
Astatine	302	337

Independent task

- 1. What is a formulation?
- 2. What is the main reason for a product having a formulation?
- 3. Why do some cleaning products have flavourings or colourings added?
- 4. Why are some pills covered in sugar?

