#### Mathematics

## Solving adfected quadratic equations III

Mr Coward



# Try this

Create three different quadratic equations with solutions x = 11 and x = -5.



#### Independent task

1) Solve the following equations

a) 
$$x^2 + 9x = -18$$

b) 
$$x^2 + 7x + 8 = 2x + 2$$
 c)  $5x + 24 = x^2$ 

c) 
$$5x + 24 = x^2$$

d)
$$3x^2 + 2x - 20 = 2x^2 + 3x$$
 e) $-2x^2 + 8x = 9 - 3x^2$  f) $(x + 5)(x + 6) = 6$ 

e) 
$$-2x^2 + 8x = 9 - 3x^2$$

$$f)(x+5)(x+6) = 6$$

$$g(3x+2)^2 = 8x^2 + 8x + 1$$
  $h(x) = \frac{49}{x}$ 

$$h) x = \frac{49}{x}$$

i) 
$$x + 5 = \frac{2(15-x)}{x}$$



### Independent task

2) Find the value of x by forming and solving quadratic equations.



3) Find the perimeter of the shapes in question 2.



#### **Explore**

Solve the following quadratic equations

$$x^{2} + 12x + 36 = 0$$
  
 $x^{2} + 12x + 36 = 1$   
 $x^{2} + 12x + 36 = 4$   
 $x^{2} + 12x + 36 = 9$   
 $x^{2} + 12x + 36 = 16$   
 $x^{2} + 12x + 36 = 25$   
 $x^{2} + 12x + 36 = 36$   
 $x^{2} + 12x + 36 = 36$   
 $x^{2} + 12x + 36 = 49$ 

What do you notice? Can you find another set of equations like this? Can you explain it? Can you generalise?

