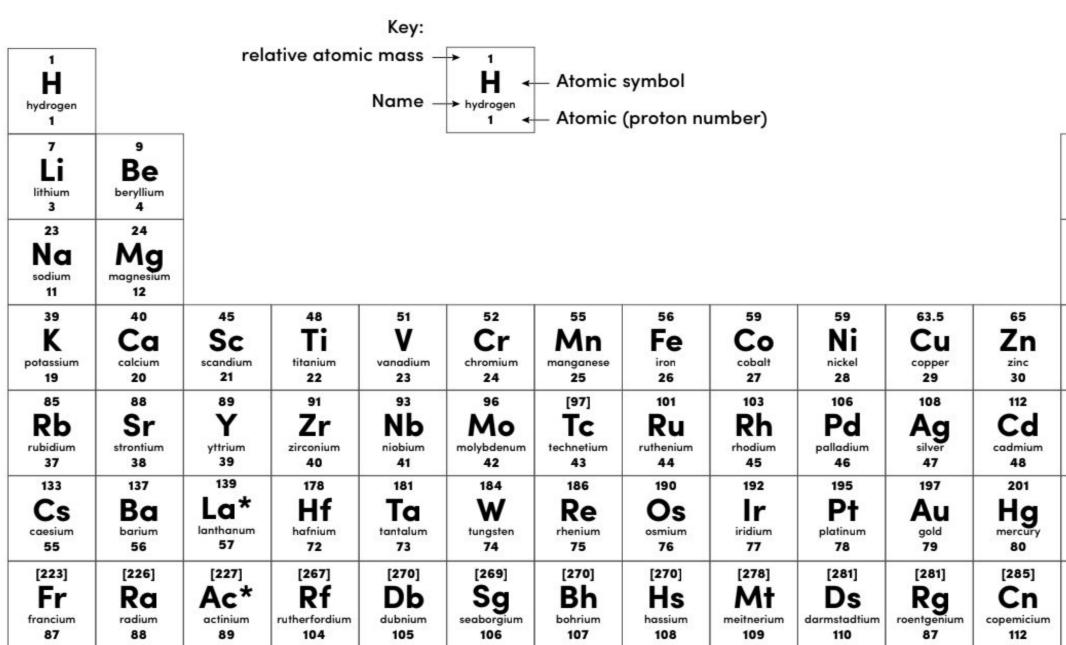
Combined Science - Chemistry - Key Stage 4


Quantitative Chemistry

Reacting Masses - Higher

Mrs. Begum

Periodic Table of Elements

* The lanthanides (atomic numbers 58 – 71) and the Actinides (atomic numbers 90 – 103) have been omitted. Relative atomic masses for **Cu** and **Cl** have not been rounded to the nearest whole number.

		51			4 He helium 2
11	12	14	16	19	20
B	C	N nitrogen	0	F	Ne
5	6	7	oxygen 8	9	10
27	28	31	32	35.5	40
AI	Si	P	S	Cl	Ar
aluminium 13	silicon 14	phosphorus 15	sulfur 16	chlorine 17	argon 18
70	73	75	79	80	84
Ga	Ge	As	Se	Br	Kr
gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
115	119	122	128	127	131
In	Sn	Sb	Te	1	Xe
indium	tin	antimony	tellurium	iodine	xenon
49 204	50	51	52	53	54
204 TI	207	Bi	[209]	[210] A +	[222]
thallium	Pb	DI	Po	AT	Rn
81	82	83	84	85	86
[286]	[289]	[289]	[293]	[293]	[294]
Nh	FI	Mc	Lv	Ts	Og
nihonium 113	flerovium 114	moscovium 115	livermorium 116	tennessine 117	organesson 118

Independent practice

- 1. What mass of magnesium oxide is formed when 96 g of magnesium reacts with oxygen? 2Mg + O₂ → 2MgO
- 2. What mass of aluminium oxide is produced when 108 g of aluminium is burned in oxygen? $2AI + 3O_{2} \rightarrow Al_{2}O_{3}$
- 3. What mass of hydrogen is produced when 192 g of magnesium is reacted with hydrochloric acid?

 $Mg + 2HCI \longrightarrow MgCl_2 + H_2$

Independent task

- 3. What mass of oxygen is needed to react with 8.5 g of hydrogen sulphide (H_2S) ? $2H_2S + 3O_2 \rightarrow 2SO_2 + 2H_2O$
- 4. What mass of potassium oxide is formed when 7.8 g of potassium is burned in oxygen? $4K + O_2 \longrightarrow 2K_2O$
- 5. What mass of aluminium oxide is produced when 135 g of aluminium is burned in oxygen? $4AI + 3O_{2} \rightarrow 2AI_{2}O_{3}$

Some students investigated calcium oxide.

- Calcium oxide has the formula CaO. (a)
 - Calculate the relative formula mass (M_r) of calcium oxide. (i) Relative atomic masses: O = 16; Ca = 40.

Relative formula mass (M_r) = _____ (1)

Calculate the percentage by mass of calcium in calcium oxide. (ii)

Percentage by mass of calcium in calcium oxide = ____%(1)

(iii) Calculate the mass of calcium needed to make 30 g of calcium oxide.

Mass of calcium = _____ g (1)

(a) The formula of iron(II) sulfate is FeSO₄ Calculate the relative formula mass (M_r) of FeSO₄ Relative atomic masses: O = 16; S = 32; Fe = 56.

The relative formula mass (M_r) = _____

(2)

(b) What is the mass of one mole of iron(II) sulfate?

(c) What mass of iron(II) sulfate would be needed to provide 14 grams of iron? Remember to give the unit.

(Total 4 marks)

(1)

A bag of fertiliser contains 18.56 kg of ammonium nitrate (NH_4NO_3). Relative formula mass (M_r) : $NH_4NO_3 = 80$ Calculate the number of moles of ammonium nitrate in the bag of fertiliser. Give your answer in standard form to 2 significant figures.

Moles of ammonium nitrate = _____

mol (4)

Question 1 answers

- (a) (i) 40 + 16 = 56
 - (ii) 40 / 56 x 100% = 71%
 - (iii) 71/100 x 30 = 21.3 g

Question 2 answers

(a) 56 + 32 + (4 × 16) = 152

(b) 152g

(c) 152 / 4 = 38(g)

Convert 18.56kg in to grams mass = 18.56x 1000 = 18560 g

Moles = mass / Mr = 18560 / 80

= 232 mol

= 2.3 × 10² mol

