Physics - Key Stage 4 - Forces

Car Safety
 (HT ONLY)

Mr Saville

Recap - Calculate Momentum

Independent Practice

1. A cannon ball with a mass of 14 kg strikes the side of a stationary ship with a velocity of $150 \mathrm{~m} / \mathrm{s}$. After the collision, the cannon ball continues moving with a velocity of $140 \mathrm{~m} / \mathrm{s}$. If this is true, what would be the velocity of a piece of wood with a mass of 2 kg ?

$150 \mathrm{~m} / \mathrm{s}$	$0 \mathrm{~m} / \mathrm{s}$	$140 \mathrm{~m} / \mathrm{s}$
14 kg	2 kg	$\mathrm{~V}=?$

1. Two cars collide head-on with each car travelling at $30 \mathrm{~m} / \mathrm{s}$. One car has a mass of 2000 kg and the other has a mass of 3000 kg . After the collision, the 3000 kg car has a velocity of $27 \mathrm{~m} / \mathrm{s}$, what is the final velocity of the 2000 kg car? Assume that the velocity of the 3000 kg car is initially positive.

$\mathrm{V}=$?
2000kg
2. A $10,000 \mathrm{~kg}$ lorry travelling at $20 \mathrm{~m} / \mathrm{s}$ collides with a 4000 kg car travelling at $10 \mathrm{~m} / \mathrm{s}$ in the same direction. If the lorry carries on moving at $10 \mathrm{~m} / \mathrm{s}$, what is the final velocity of the car?

$20 \mathrm{~m} / \mathrm{s}$	$10 \mathrm{~m} / \mathrm{s}$	$10 \mathrm{~m} / \mathrm{s}$	$\mathrm{V}=?$
$10,000 \mathrm{~kg}$	4000 kg	$40,000 \mathrm{~kg}$	4000 kg

Independent Practice

1. Explain why wearing a seatbelt reduces the risk of serious injury in a crash? Explain why padded safety helmets reduce the risk of head injuries during an accident? (3)
2. Seat belts help protect people in car crashes, identify two other safety features of a car that work in a similar way. (2)
3. Children's seat belts are a lot narrower than adult seat belts. Explain why this is possible. (2)

Independent Practice

1. a) If a car and driver have an initial momentum of $60,000 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$ and come to rest in 0.3 seconds. What stopping force is exerted on the driver?
b) A seat belt brings the driver to rest in 0.8 s . What force does the seat belt exert on the driver?
2. a) If a car has an initial momentum of $50,000 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$ and comes to rest in 0.25 s . What stopping force is exerted on the car?
b) The air bag brings the driver to rest in 0.75 s . What force does the airbag exert on the driver?
3. a) If a van has a mass of 4000 kg and is travelling at $12 \mathrm{~m} / \mathrm{s}$, what is the initial momentum of the van?
b) What force is exerted on the van if it takes 0.6 s to stop?
