Prove that Two Vectors are Parallel

Mr Bond

Please note this downloadable resource contains some colored font

Prove that two vectors are parallel

1. Decide whether each statement is true or false.
a) $\binom{5}{7}$ is parallel to $\binom{15}{27}$
b) $\boldsymbol{a}+\boldsymbol{b}$ is parallel to $2 \boldsymbol{a}+\boldsymbol{b}$
c) $3 \boldsymbol{c}-\boldsymbol{d}$ is parallel to $\frac{3}{2} \boldsymbol{c}-\frac{1}{2} \boldsymbol{d}$
2. $A B C D$ is a parallelogram. M and N are the midpoints of $A D$ and $C D$ respectively.

a) Write each vector in terms of \boldsymbol{j} and \boldsymbol{k}.
i) $\overrightarrow{A C}$
ii) $\overrightarrow{M N}$
b) Are $\overrightarrow{A C}$ and $\overrightarrow{M N}$ parallel? How do you know?

Prove that two vectors are parallel

3. $A B C D$ is a trapezium.
E is the midpoint of $B C$. F is the midpoint of $A C$.
Show that $\overrightarrow{E F}$ is parallel to $\overrightarrow{D C}$

Answers

Prove that two vectors are parallel

1. Decide whether each statement is true or false.
a) $\binom{5}{7}$ is parallel to $\binom{15}{21}$ True
b) $\boldsymbol{a}+\boldsymbol{b}$ is parallel to $2 \boldsymbol{a}+\boldsymbol{b}$ False
c) $3 \boldsymbol{c}-\boldsymbol{d}$ is parallel to $\frac{3}{2} \boldsymbol{c}-\frac{1}{2} \boldsymbol{d}$ True
2. $A B C D$ is a parallelogram. M and N are the midpoints of $A D$ and $C D$ respectively.

a) Write each vector in terms of \boldsymbol{j} and \boldsymbol{k}.
i) $\overrightarrow{A C} \quad \boldsymbol{j}+\boldsymbol{k}$
ii) $\overrightarrow{M N} \frac{1}{2} \boldsymbol{j}+\frac{1}{2} \boldsymbol{k}$
b) Are $\overrightarrow{A C}$ and $\overrightarrow{M N}$ parallel? How do you
know? Yes, $\overrightarrow{A C}=2 \times \overrightarrow{M N}$

Prove that two vectors are parallel

3. $A B C D$ is a trapezium.
E is the midpoint of $B C$. F is the midpoint of $A C$.
Show that $\overrightarrow{E F}$ is parallel to $\overrightarrow{D C}$

$$
\overrightarrow{D C}=3 q
$$

$$
\overrightarrow{E F}=\frac{1}{2} \overrightarrow{B C}+\frac{1}{2} \overrightarrow{C A}
$$

$$
\overrightarrow{E F}=\frac{1}{2}(-\boldsymbol{q}-2 \boldsymbol{p}+3 \boldsymbol{q})+\frac{1}{2}(-3 \boldsymbol{q}+2 \boldsymbol{p})
$$

$$
\overrightarrow{E F}=\frac{1}{2}(2 \boldsymbol{q}-2 \boldsymbol{p})+\frac{1}{2}(-3 \boldsymbol{q}+2 \boldsymbol{p})
$$

$$
\overrightarrow{E F}=\boldsymbol{q}-\boldsymbol{p}-\frac{3}{2} \boldsymbol{q}+\boldsymbol{p}=-\boldsymbol{q}
$$

$\overrightarrow{E F}=-\frac{1}{3} \times \overrightarrow{D C}$ therefore $\overrightarrow{D C}$ and $\overrightarrow{E F}$ are parallel.

