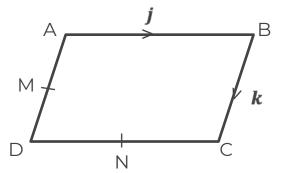
Maths

Prove that Two Vectors are Parallel

Mr Bond

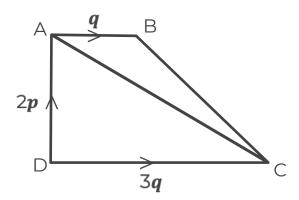

Please note this downloadable resource contains some colored font

- 1. Decide whether each statement is true or false.
- a) $\binom{5}{7}$ is parallel to $\binom{15}{21}$
- b) a + b is parallel to 2a + b

c) 3c - d is parallel to $\frac{3}{2}c - \frac{1}{2}d$

2. ABCD is a parallelogram. M and N are the midpoints of AD and CD respectively.

- a) Write each vector in terms of j and k.
- i) \overrightarrow{AC}

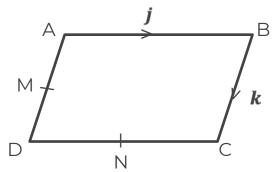

- ii) \overrightarrow{MN}
- b) Are \overrightarrow{AC} and \overrightarrow{MN} parallel? How do you know?

3. ABCD is a trapezium.

E is the midpoint of BC. F is the

midpoint of AC.

Show that \overrightarrow{EF} is parallel to \overrightarrow{DC}

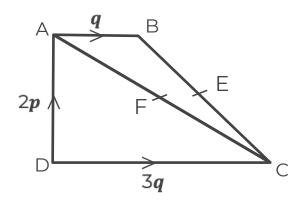

Answers

- 1. Decide whether each statement is true or false.
- a) $\binom{5}{7}$ is parallel to $\binom{15}{21}$ True
- b) a + b is parallel to 2a + b False

c) 3c - d is parallel to $\frac{3}{2}c - \frac{1}{2}d$ True

2. ABCD is a parallelogram. M and N are the midpoints of AD and CD respectively.

a) Write each vector in terms of j and k.


i)
$$\overrightarrow{AC}$$
 $\overrightarrow{j} + \overrightarrow{k}$ ii) \overrightarrow{MN} $\frac{1}{2}\overrightarrow{j} + \frac{1}{2}\overrightarrow{k}$

b) Are \overrightarrow{AC} and \overrightarrow{MN} parallel? How do you know? Yes, $\overrightarrow{AC} = 2 \times \overrightarrow{MN}$

3. ABCD is a trapezium.

E is the midpoint of BC. F is the midpoint of AC.

Show that \overrightarrow{EF} is parallel to \overrightarrow{DC}

$$\overrightarrow{DC} = 3q$$

$$\overrightarrow{EF} = \frac{1}{2}\overrightarrow{BC} + \frac{1}{2}\overrightarrow{CA}$$

$$\overrightarrow{EF} = \frac{1}{2}(-q - 2p + 3q) + \frac{1}{2}(-3q + 2p)$$

$$\overrightarrow{EF} = \frac{1}{2}(2q - 2p) + \frac{1}{2}(-3q + 2p)$$

$$\overrightarrow{EF} = \boldsymbol{q} - \boldsymbol{p} - \frac{3}{2}\boldsymbol{q} + \boldsymbol{p} = -\boldsymbol{q}$$

 $\overrightarrow{EF} = -\frac{1}{3} \times \overrightarrow{DC}$ therefore \overrightarrow{DC} and \overrightarrow{EF} are parallel.

