Lesson 10 - Moments and Work Revision

Physics-KS3
Forces in Action

Mrs Wolstenholme

Complete the task

Moments:

1. What is the moment of a force?
2. Write down two ways to increase the moment about a pivot.

Calculating moments

Moment $=$	Force x	Perpendicular distance
(Nm)	(N)	(m)
(Ncm)		(cm)

What are the units for moment?

Option 1

Cm and m

Option 3
N and Ncm

Option 2

Nm and m

Option 4

Nm and Ncm

What are the units for perpendicular distance?

Option 1

Cm and m

Option 3
N and Ncm

Option 2

Nm and m

$$
\text { Option } 4
$$

Nm and Ncm

What is the unit for force?

Option 1
m
Option 3

Option 2

Nm

Ncm
Option 4
N

Clockwise moment

Anticlockwise moment

Balanced Moments

Clockwise Moment = Anticlockwise Moment

Which Direction will an object rotate because of a clockwise moment?

Option 1
Same as a clock hand

Option 3

Opposite to a clock hand

Option 2

Up

Option 4
Down

Which Direction will an object rotate because of an anticlockwise moment?

Option 1
Same as a clock hand

Option 3

Opposite to a clock hand

Option 2

Up

Option 4
Down

For an object to be balanced:

Option 1

Left side moment $=$ Right side moment

Option 3

Clockwise moment = Anticlockwise moment

Option 2

Clockwise moment is larger than anticlockwise moment

Option 4

There are no forces on the object

Complete the task

Fill in the gaps

Moments can be \qquad or \qquad

- Clockwise moments cause a rotation in the \qquad direction of a clock hand
- Anticlockwise moments cause a \qquad in the opposite direction of a
\qquad hand
- For an object to be balanced \qquad

Is this crane balanced?

Clockwise Moment = Anticlockwise Moment

Credit: no attribution required

Anticlockwise moment $=$ Force \times perpendicular distance

$$
\begin{aligned}
& =500 \times 2 \\
& =1000 \mathrm{Nm}
\end{aligned}
$$

Clockwise moment $=$ Force \times perpendicular distance

$$
\begin{aligned}
& =200 \times 5 \\
& =1000 \mathrm{Nm}
\end{aligned}
$$

Anticlockwise moment $=1000 \mathrm{Nm} \quad$ Clockwise moment $=1000 \mathrm{Nm}$
Clockwise Moment = Anticlockwise Moment

Balanced!

Your Turn: Is this crane balanced?

Clockwise Moment = Anticlockwise Moment

Clockwise Moment $=100 \times 4=400 \mathrm{Nm}$ moment.
What can we do to balance the crane?

Credit: no attribution required

The seesaw is balanced. What is the weight

 of the animal on the left?

Clockwise moment = Anticlockwise moment Force x distance $=$ Force x distance

$$
\begin{gathered}
500 \times 2=\text { Force } \times 1 \\
1000=\text { Force } \\
\text { Force }=1000 \mathrm{~N}
\end{gathered}
$$

Independent Practice

1. The crane is balanced. The weight of the counterweight is 250 N . What is the weight of the load?

Credit: no attribution required
2. The crane is balanced. The weight of the counterweight is 600 N . What is the weight of the load?

Credit: no attribution required

Work Done

Exerts a force

Energy is transferred
Work is done

Work Done or $=$ Force \times distance
Energy Transferred
(J)
(N)
(m)

$3 \mathrm{~km} \times 10000=3000 \mathrm{~m}$

Changing Units

Change the following distances into metres:

Power

Power is the rate at which energy is transferred or work is done.

Power $=$| Energy Transferred |
| :---: |
| or Work Done |$\div \quad$ time

(W)
(J)
(s)

Rounding to 3 s.f.

Zeros at the beginning don't count.
Zeros at the end don't count unless there is a decimal point.

230403 Zeros between numbers do count.

Round 346.73 to 3 significant figures

Option 1
346.7

Option 3
346.8

Option 2

345

Option 4

347

Round 60352 to 3 significant

 figures| Option 1 | Option 2
 60400 |
| :--- | :--- |
| Option 3 | 60300 |
| 604 | Option 4 |

Round 36.45 to 3 significant

 figures| Option 1 | Option 2 |
| :--- | :--- |
| 36.46 | 36 |
| Option 3 | |
| 36.5 | Option 4 |

Rounding to 3 s.f.

Round the following numbers to 3 s.f.

1. 403.5
2. 3.33333333
3. 89.45678
4. 0.004372
5. 65.66666

Put it all together

Work Done = Force \times Distance

Power $=$ Work Done \div time

A force of 30 N is required to move an object 40 cm in 36 seconds. Calculate the power and give your answer to 3 s.f.

Step 1: Change Distance into m $\mathbf{4 0} \mathbf{~ c m ~} \div \mathbf{1 0 0} \mathbf{= 0 . 4} \mathbf{~ m}$
Step 2: Calculate Work Done Work Done = Force \mathbf{x} Distance $=30 \times 0.4=12 \mathrm{~J}$
Step 3: Calculate Power Power $=$ Work Done \div Time $=12 \div 36=0.33333333$ W
Step 4: Round to 3 s.f. Power $=\mathbf{0} .333 \mathbf{W}$

Put it all together

A force of 15 N is required to move an object 0.6 km in 70 seconds. Calculate the power and give your answer to 3 s.f.

Step 1: Change Distance into m
Step 2: Calculate Work Done
Step 3: Calculate Power
Step 4: Round to 3 s.f.

Independent Practice
Work Done = Force \times Distance
Power $=$ Work Done \div time
x1000
km

m
$\div 100$
cm
m

Question	A force of 2 N is required to move an object 400 cm in 30 seconds. Calculate the power and give your answer to 3 s.f.	A force of 6 N is required to move an object 0.5 km in 90 seconds. Calculate the power and give your answer to 3 s.f.
Step 1: Change distance to m		
Step 2: Calculate Work Done		
Step 3: Calculate Power		
Step 4: Round to 3 s.f.		

Independent Practice ${ }^{\text {x1000 }}$		
km		
Power $=$ Work Done \div time $\mathrm{cm} \square \mathrm{m}$		
Question	A force of $\mathbf{8 0} \mathbf{N}$ is required to move an object $\mathbf{2}$ km in 600 s. Calculate the power and give your answer to 3 s.f.	A force of $\mathbf{0 . 5} \mathbf{N}$ is required to move an object 40 cm in 0.7 s. Calculate the power and give your answer to 3 s.f.
Step 1: Change distance to m		
Step 2: Calculate Work Done		
Step 3: Calculate Power		
Step 4: Round to 3 s.f.		

Well Done!

