Lesson 14 - Revision 2

Physics-KS3

Forces and Motion

Mrs Wolstenholme

What is pressure?

Pressure is related to how spread out a
\qquad is
over an
\qquad .
Larger Area:

\qquad
pressureLarger Force:
\qquad pressure
Smaller Area:
\qquad pressure
Smaller Force: \qquad pressure

Why do polar bears have such large feet?

The polar bears have large feet with a large area. This means the pressure is low. Which means they won't fall through the ice.

Why we hammer the sharp end of the nail into the wall?

The sharp end has a ____ area.
This means the pressure is
\ldots ___ which means it is easier to
push into the wall.

Calculating Pressure or Force

Pressure	$=$	Force \div
$(\mathbf{P a})$		Area
$\left(\mathbf{N} / \mathbf{c m}^{2}\right)$		
		$\left(\mathbf{m}^{2}\right)$
$\left(\mathbf{c m}^{2}\right)$		

If the unit of area is given as cm^{2} what is the unit of pressure?

Option 1
$\mathrm{N} / \mathrm{cm}^{2}$

Option 3

Kilogram (kg)

Option 2
$\mathrm{N} / \mathrm{m}^{2}$

Option 4

Pa

If the unit of area is given as \mathbf{m}^{2} what is the unit of pressure?

Option 1
$\mathrm{N} / \mathrm{cm}^{2}$

Option 3

Kilogram (kg)

Option 2

$\mathrm{N} / \mathrm{m}^{2}$

Option 4

Pa

$$
\text { Pressure } \quad=\text { Force } \div \text { Area }
$$

	The surface area of an object is $\mathbf{1 . 2} \mathrm{m}^{2}$. A force of $\mathbf{4 8 0 N}$ is applied to it. What is the pressure?
Values	Force = 480 N. Area= $\mathbf{1 . 2} \mathbf{~ m}^{\mathbf{2}}$
Equation	Pressure = Force \div Area
Substitute	Pressure = 480 $\div \mathbf{1 . 2}$
Rearrange	Not needed for this question
Answer	Pressure = 400
Units	$\mathbf{P a}$

400 Pa

$$
\text { Pressure } \quad=\text { Force } \div \text { Area }
$$

	The surface area of an object is $1.1 \mathrm{~m}^{2}$. A force of 5.5 N is applied to it. What is the pressure?
Values	
Equation	
Substitute	
Rearrange	Not needed for this question
Answer	
Units	

$$
\text { Pressure } \quad=\text { Force } \div \text { Area }
$$

	If the pressure on an object is 40 Pa and the surface area is $\mathbf{8} \mathbf{m}^{\mathbf{2}}$, what is the force being applied?
Values	Pressure $=\mathbf{4 0} \mathbf{P a}$. Area $=\mathbf{8} \mathbf{m}^{\mathbf{2}}$
Equation	Pressure $=$ Force \div Area
Substitute	40 F Force $\div 8$
Rearrange	$\begin{aligned} & 40 \times 8=\text { Force } \div \mathbf{8 \times 8} \\ & 40 \times 8=\text { Force } \end{aligned}$
Answer	320 = Force
Units	N

What is the next step?

1. $3=$ Force $\div 5$
2. $6=$ Force $\div 9$
3. $1.2=$ Force $\div 3.4$
4. $7=$ Force $\div 10$
5. $6.5=$ Force $\div 3$

$$
\text { Pressure } \quad=\text { Force } \div \text { Area }
$$

	If the pressure on an object is 3.5 Pa and the surface area is $4 \mathrm{~m}^{2}$, what is the force being applied?
Values	
Equation	
Substitute	
Rearrange	
Answer	
Units	

Independent Practice

Values

Equation

Substitute
Rearrange

Answer
Units

1. What is the pressure of a force of 100 N exerted on a surface area of $10 \mathrm{~m}^{2}$?
2. What is the pressure of a force of 25000 N exerted on a surface area of $50 \mathrm{~m}^{2}$?
3. The surface area of an object is $0.08 \mathrm{~m}^{2}$. Its weight is 120 N . What is the pressure?
4. If the pressure on an object is 4 Pa and the surface area is $2 \mathrm{~m}^{2}$, what is the force being applied?
5. The surface area of an object is $0.5 \mathrm{~m}^{2}$. The pressure is 20 Pa . What force is being applied?
6. An object applies a force of 60 N to a surface area of $15 \mathrm{~m}^{2}$. What is the pressure?

Calculating Speed

Speed	$=$ distance \div	time
$(\mathbf{m} / \mathbf{s})$	(\mathbf{m})	(\mathbf{s})
$(\mathbf{m i l e} / \mathbf{h})$	$(\mathbf{m i l e})$	(\mathbf{h})
$(\mathbf{k m} / \mathbf{h})$	$(\mathbf{k m})$	(\mathbf{h})

Speed $=$ distance \div time

	An object travels 90 m in 20s. What is its speed?
Values	distance $=\mathbf{9 0} \mathbf{m}$. time $=\mathbf{2 0} \mathrm{s}$
Equation	Speed $=$ distance \div time
Substitute	Speed $=\mathbf{9 0} \div \mathbf{2 0}$
Rearrange	Not required for this question
Answer	Speed $=\mathbf{4 . 5}$
Units	m / s

$4.5 \mathrm{~m} / \mathrm{s}$

Speed $=$ distance \div time

If an object travels for 350 s and travels 7000 m , what is its speed?

Values
Equation
Substitute
Rearrange Not required for this question

Answer
Units

Speed $=$ distance \div time

	If an object travels for 0.08 s at a speed of $62 \mathrm{~m} / \mathrm{s}$ how far has it travelled?
Values	speed $=\mathbf{6 2} \mathbf{~ m} / \mathrm{s}$. time $=\mathbf{0 . 0 8} \mathrm{s}$
Equation	Speed $=$ distance \div time
Substitute	$\mathbf{6 2 = \text { distance } \div \mathbf { 0 . 0 8 }}$
Rearrange	$\mathbf{6 2 \times 0 . 0 8 = \text { distance } \div \mathbf { 0 . 0 8 \times 0 . 0 8 }}$$\mathbf{6 2 \times 0 . 0 8}=$ distance
Answer	$4.96=$ distance
Units	m

Speed $=$ distance \div time

	An object travels at a speed of $2 \mathrm{~m} / \mathrm{s}$ for 170 s . How far has it travelled in m ?
Values	
Equation	
Substitute	
Rearrange	
Answer	
Units	

Independent Practice

Values

1. In 180 s , an object travels 720 m . What is its speed?

Equation
Substitute Rearrange
5. An object travels at a speed of $10 \mathrm{~m} / \mathrm{s}$ for 60 s . How far has it travelled in m ?

Answer

Units

2. In a journey lasting 630 s , a car travels 5355 m . What was its speed?
3. An object travels 9100 m in 350 s . What is its speed?
4. What is the distance travelled by an object travelling at $70 \mathrm{~m} / \mathrm{s}$ for 200 s ? 6. If an object travels for 3400 s at a speed of $12 \mathrm{~m} / \mathrm{s}$ how far has it travelled?

Time (h)

Section B 0 km/h

Time (h)

Calculate the speed of sections: A, B and C.

Calculate the speed of sections: A, B and C.
Time (h)

Share your work with Oak National

If you'd like to, please ask your parent or carer to share your work on Instagram, Facebook or Twitter tagging @OakNational and \#LearnwithOak

