Rate of Reaction using Graphs and Tangents (Higher Tier)

 Worksheet

 Worksheet}

Combined Science - Chemistry - Key Stage 4 The Rate and Extent of Chemical Change

Dr Deng

Example 1

A student investigated the rate of reaction between calcium carbonate (marble chips) and hydrochloric acid.
The student had collected $34 \mathrm{~cm}^{3}$ of gas produced after 20 seconds. Calculate the mean rate of reaction from 0 to 20 seconds.

Example 2

A student investigated the rate of reaction between magnesium and hydrochloric acid.
The student had recorded an initial reactant mass of 23 g . The mass of the product recorded was 19.4 g after 30 seconds.
Calculate the mean rate of reaction from 0 to 30 seconds.

Example 3

Determine the mean rate of reaction in the first 18 seconds

Question 1: Information

A student investigated how temperature affects the rate of reaction between magnesium carbonate and dilute hydrochloric acid. The table below shows the student's results for hydrochloric acid at $30^{\circ} \mathrm{C}$.

Time (in seconds)	Loss of mass (in grams)
0	0.00
20	0.24
40	0.46
60	0.65
80	0.80
100	0.89
120	0.97
140	

Question 1

Task: Plot the data from the table and draw a line of best fit.

Time (in seconds)	Loss of mass (in grams)
0	0.00
20	0.24
40	0.46
60	0.65
80	0.80
100	0.89
120	0.97
140	

Question 2

(a) Determine the rate of reaction at 10 seconds when:
i) Concentration of acid used is 1.0 M ii) Concentration of acid used is 1.5 M
(b) From question (a), determine which reaction was faster at 10 seconds.

Example 1 answer

A student investigated the rate of reaction between calcium carbonate (marble chips) and hydrochloric acid.
The student had collected $34 \mathrm{~cm}^{3}$ of gas produced after 20 seconds. Calculate the mean rate of reaction from 0 to 20 seconds.

$$
\text { Mean rate of reaction }=\frac{\text { quantity of product formed }}{\text { time taken }}
$$

$$
\begin{aligned}
& =\frac{34 \mathrm{~cm}^{3}}{20 \mathrm{~s}} \\
& =1.7 \mathrm{~cm}^{3} / \mathrm{s}
\end{aligned}
$$

Example 2 answer

A student investigated the rate of reaction between magnesium and hydrochloric acid.
The student had recorded an initial reactant mass of 23 g . The mass of the product recorded was 19.4 g after 30 seconds.
Calculate the mean rate of reaction from 0 to 30 seconds.

$$
\text { Mean rate of reaction }=\frac{\text { quantity of reactant used }}{\text { time taken }}
$$

$$
\begin{aligned}
& =\frac{23-19.4 \mathrm{~g}}{30 \mathrm{~s}} \\
& =0.12 \mathrm{~g} / \mathrm{s}
\end{aligned}
$$

Example 3 answer

Mean rate of reaction in the first 18 seconds
$=\frac{\Delta y}{\Delta x}$
$=32$ 18
= 1.777...
$=1.78 \mathrm{~cm}^{3} / \mathrm{s}$

Question 1 answer

Plot the data from the table and draw a line of best fit.

Time (in seconds)	Loss of mass (in grams)
0	0.00
20	0.24
40	0.46
60	0.65
80	0.80
100	0.89
120	0.97
140	

Question 2 answer

(a) Determine the rate of reaction at 10 seconds when:
i) Concentration of acid used is 1.0 M

Volume

Rate $=\frac{\Delta y}{\Delta x}$

$$
=\frac{26-6 \mathrm{~cm}^{3}}{15-4 \mathrm{~s}}
$$

$$
=20 \mathrm{~cm}^{3}
$$

11 s
$=1.81 \mathrm{~cm}^{3} / \mathrm{s}$

Question 2 answer

(a) Determine the rate of reaction at 10 seconds when:
ii) Concentration of acid used is 1.5 M

$$
\begin{aligned}
\text { Rate } & =\frac{\Delta y}{\Delta x} \\
= & \frac{50-16 \mathrm{~cm}^{3}}{16-3 \mathrm{~s}} \\
= & \frac{34 \mathrm{~cm}^{3}}{13 \mathrm{~s}} \\
= & 2.62 \mathrm{~cm}^{3} / \mathrm{s}
\end{aligned}
$$

Question 2 answer

(a) The rate of reaction at 10 seconds when:
i) Concentration of acid used is $1.0 \mathrm{M}-1.81 \mathrm{~cm}^{3} / \mathrm{s}$
ii) Concentration of acid used is $1.5 \mathrm{M}-2.62 \mathrm{~cm}^{3} / \mathrm{s}$
(b) Reaction with the higher concentration of acid used (7.5 M) was faster at 10 seconds.

