Combined science - Physics - Key stage 4 - Energy

Power - worksheet

Dr Fishwick

In lesson questions

Independent practice

1. Define the term power.
a. Power is the \qquad
2. Which example has a higher power?
a. A sprinter running the 100 m in 10 s , or
b. A marathon runner completing their last 400 m in 50 seconds
3. Explain your answers
4. What are the factors affecting power?

Independent practice

1. Find the power of a lift that transfers 450 J of energy in 15 seconds
2. An electric motor transfers 8000 J of energy in 2.5 seconds. Calculate its power.
3. A weightlifter gives a dumbbell 600 J of gravitational potential energy store in 1.2 seconds. What is the weightlifter's power?
4. What is the power of an engine that does 120000 J of work in 2 minutes?
5. A car transfers 5.95 kJ of energy in 35 seconds. Find the power of the car. Give your answer in kW.

Independent practice

1. A ship contains an engine with a power of 24000 W . The ship's engine runs for 12 seconds, how much energy is transferred?
2. Find the work done by an electric motor of which has a power of 125 W if it is switched on for 70s.
3. A track cyclist has a peak power of 2250 W and holds this for 10.1 s to complete a lap of the track. How much energy is transferred?
4. A motorcycle has a power of 33 kW and runs for 120 s . How much energy does it transfer?
5. A car has a power of 85 kW and runs for 15 minutes. How much energy is transferred? Give your answer in kJ.

Independent practice

1. A tractor uses 187500 J of energy to pull a plough. If the power of the tractor is 55000 W , find the time the plough was pulled for.
2. How long would it take a 100 W light bulb to transfer 47 J of energy?
3. A crane lifts a load at power of 340 W . How long does it take for a crate to gain 1500 J of GPE?
4. A 2 kW hair dryer transfers 12000 J of energy in 6 s . How much longer would it take a 1.5 kW hair dryer to transfer the same amount of energy?
5. Challenge: How long would it take a 200 W motor to lift a 1.5 kg box to a height of 30 m ? ($\mathrm{g}=10 \mathrm{~N} / \mathrm{kg}$) (hint: think about GPE)

Answers

Review

1. Define the term power.
a. Power is the rate of transfer of energy.
2. Which example is a higher power?
a. A sprinter running the 100 m in 10 s , or
b. A marathon runner completing their last 400 m in 50 seconds Sprinter
3. Explain your answer. They are moving faster so will be transferring energy at a higher rate
4. What are the factors affecting power? The amount of energy to be transferred, time taken

Review

1. Find the power of a lift that transfers 450 J of energy in 15 seconds. $\mathbf{3 0} \mathbf{~ W}$
2. An electric motor transfers 8000 J of energy in 2.5 seconds. Calculate its power. 3200 W
3. A weightlifter gives a dumbbell 600 J of gravitational potential energy store in 1.2 seconds. What is the weightlifter's power? 500 W
4. What is the power of an engine that does 120000 J of work in 2 minutes?

1000 W

5. A car transfers 5.95 kJ of energy in 35 seconds. Find the power of the car. Give your answer in kW. $\mathbf{1 . 7} \mathbf{~ k W}$

Review

1. A ship contains an engine with a power of 24000 W . The ship's engine runs for 12 seconds, how much energy is transferred? 288000 J
2. Find the work done by an electric motor of which has a power of 125 W if it is switched on for 70s. $8750 \mathbf{J}$
3. A track cyclist has a peak power of 2250 W and holds this for 10.1 s to complete a lap of the track. How much energy is transferred? 22725 J
4. A motorcycle has a power of 33 kW and runs for 120 s . How much energy does it transfer? 3960000 J
5. A car has a power of 85 kW and runs for 15 minutes. How much energy is transferred? Give your answer in kJ. 76500 kJ

Review

1. A tractor uses 187500 J of energy to pull a plough. If the power of the tractor is 55000 W , find the time the plough was pulled for. $3.4 \mathbf{~ s}$
2. How long would it take a 100 W light bulb to transfer 47 J of energy? $\mathbf{0 . 4 7} \mathbf{~ s}$
3. A crane lifts a load at power of 340 W . How long does it take for a crate to gain 1500 J of GPE? 4.4 s
4. A 2 kW hair dryer transfers 12000 J of energy in 6 s . How much longer would it take a 1.5 kW hair dryer to transfer the same amount of energy? $\mathbf{2} \mathbf{s}$
5. Challenge: How long would it take a 200 W motor to lift a 1.5 kg box to a height of 30 m ? ($\mathrm{g}=10 \mathrm{~N} / \mathrm{kg}$) (hint: think about GPE) 2.25 s
