Combined Science Key Stage 4 - Foundation

Curriculum document

1. Philosophy

Six underlying attributes at the heart of Oak's curriculum and lessons.

Knowledge and vocabulary is explicity taught across units and lessons so that pupils build on what they already know to develop powerful knowledge.

Knowledge is **sequenced** and mapped coherently so that pupils make meaningful connections

Curriculum **flexibility** enables schools to tailor their use of Oak to their curricula and context.

Addresses the needs of all learners through adherence to **accessibility** guidelines and requirements.

Rigorous application of the science of learning and best practise ensures learning is **informed by** evidence.

Commitment to **diversity** in our teaching, out teachers and in the language, texts and media we use so that all pupils feel positively represented.

2. Units

KS4 Combined Science is formed of 24 units and this is the recommended sequence:

Unit Title	Recommended year group	Number of lessons
1 Cell biology (FT)	Year 10	19
2 Atomic structure and periodic table (FT)	Year 10	18
3 Particle Model of Matter (FT)	Year 10	10
4 Organisation (FT)	Year 10	23
5 Bonding, structure and the properties of Matter (FT)	Year 10	12
6 Energy (FT)	Year 10	13
7 Infection and response (FT)	Year 10	13
8 Quantitative Chemistry (FT)	Year 10	5
9 Electricity (FT)	Year 10	19

10 Bioenergetics (FT)	Year 10	13
11 Chemical changes (FT)	Year 10	15
12 Atomic Structure (FT)	Year 10	8
13 Ecology (FT)	Year 10	12
14 Energy changes (FT)	Year 10	7
15 Magnetism (FT)	Year 10	4
16 Homeostasis and response (FT)	Year 11	12
17 The rate and extent of chemical change (FT)	Year 11	11
18 Forces (FT)	Year 11	17
19 Inheritance, variation and evolution (FT)	Year 11	18
20 Organic Chemistry (FT)	Year 11	5
21 Waves (FT)	Year 11	9

22 Chemical analysis (FT)	Year 11	5
23 Chemistry of the atmosphere (FT)	Year 11	8
24 Using Resources (FT)	Year 11	9

3. Lessons

Unit 1 Cell biology (FT)

19 Lessons

Lesson number	Lesson question	Pupils will learn
1.	Useful maths skills	 Calculate mean values Practice unit conversions, magnification calculation and percentage change
2.	Cell biology review (Part 2)	 Review and consolidate knowledge of cell transport from the cell biology unit
3.	Diffusion	 Describe how substances move in and out of cells by diffusion, giving examples Describe and explain factors that can affect the rate of diffusion
4.	Cell biology review (Part 1)	 Review and consolidate knowledge of cells from the cell biology unit

5.	Exchange surfaces and surface area to volume ratio	Calculate surface area to volume ratios
		 Explain the need for internal surfaces and circulatory systems in larger organisms
		 Describe and explain adaptations in plants and animals for the exchange of materials
6.	Case study and exam skills	Practice applying knowledge to exam-style questions
		Learn about the work of Dr Stephanie dancer
7.	Prokaryotic and Eukaryotic Cells	Describe the differences between eukaryotic and prokaryotic cells
		Practice identifying eukaryotic and prokaryotic cells
3.	Comparing of cells	Describe functions of subcellular structures
		Compare the functions of different cells
9.	Microscopes, magnification and resolution	Describe the differences between images produced by light and electron microscopes
		 Explain how electron microscopes have enhanced our understanding of cell structures and processes
		Explain what is meant by resolution and magnification

10.	Active transport	 Describe how substances are taken up by active transport Compare diffusion, osmosis and active transport Apply knowledge to exam questions
11.	Osmosis	 Define the term osmosis and give some examples in living things Explain the changes to both animal and plant cells when placed in different solutions
12.	Osmosis required practical (Part 1)	 Identify variables to change, measure and control to test a hypothesis Practice method writing and explain reasons for given method steps Make and record accurate mass measurements
13.	Specialised cells	 Describe specialised features of given cells Explain the reason for the special features in terms of the cells function Explain the importance of cell differentiation

14.	Order of magnitude calculations	 Convert mm to μm and vice versa Express numbers in standard form
15.	Using the microscope and magnification equation	 Describe how to use a microscope to view plant cells in focus Use the magnification equation to calculate the magnification, image or actual size
		 Change the units if necessary
16.	Viewing animal cells under the microscope and calculating magnification	 Find and view animal cells using a microscope Use the equation M=I/A to calculate any value given the other two Practice using scale to calculate magnification
17.	Cell cycle and mitosis	 Identify DNA, genes, chromosomes on a diagram Describe the main stages of the cell cycle Use information provided to calculate time spent in different phases of the cell cycle

18.	Stem	cells	and	their	uses

- Name sources of stem cells and their uses
- Describe some potential uses of stem cell technology
- Evaluate different stem cell sources

19. Osmosis required practical (Part 2)

- Measure change in mass accurately and calculate percentage change
- Display and interpret results appropriately
- Describe and explain the patterns in the results

Unit 2 Atomic structure and periodic table (FT)

Lesson number	Lesson question	Pupils will learn
1.	Mixtures, filtration and crystallisation	Define, identify and describe mixtures
		 Explain the steps in the separation of mixtures of soluble and insoluble substances
		 Explain how mixtures of soluble and insoluble substances are represented and recognised
2.	Separation by distillation	 Describe how to separate a mixture of two or more liquids, identifying key equipment
		Explain the processes and equipment involved
		Apply particle theory to distillation
3.	Separation by chromatography	Describe the process of chromatography
		 Carry out the chromatography of chlorophyll, explaining key steps
		Interpret chromatograms

4.	Atomic structure	 Describe atoms using the nuclear model
		 State the charges and mass of the three subatomic particles
		 Use the periodic table to calculate the number of protons, neutrons and electrons for any given element
5.	Development of the atomic model	Describe the development of the atomic model
		 Compare the nuclear model with the plum pudding model
		 Explain how new evidence from the scattering experiment led to a change in the atomic model
6.	Electron Configuration and the Periodic Table	Describe what keeps electrons in their orbits
		 Draw and write the electron configuration for any of the first 20 elements
		 Describe the link between outer shell electron number, number of shells and location in the periodic table
		Humber of shells and location in the periodic table
7.	Periodic Table development	Describe the layout of the modern periodic table
7.	Periodic Table development	

Group 1	 Describe physical and chemical properties of the group 1 elements
	 Write equations to represent their reaction with water
	 Describe and explain trends in the properties and reactivity of group 1 elements
Review (Part 2)	 Revision of separation techniques and the command words 'describe' and 'explain' in exam questions
Group 7	 Describe trends in physical properties of group 7 elements
	 Explain the trend in physical properties of group 7 elements
Review (Part 1)	 Revision of atomic structure and the maths skills covered in the unit
Group 7 Displacement	 Describe trends in reactivity going down group 7
	 Describe the results of a series of reactions of group 7 elements and their compounds
	 Write word and symbol equations to represent some reactions involving group 7 elements
	Review (Part 2) Group 7 Review (Part 1)

13.	Why elements react	 Explain the difference between metals and non-metals in terms of reactions and electrons Explain why group 0 do not react in terms of electrons Describe trends in physical properties of group 0
14.	Atoms, elements and compounds	 Define elements and compounds and identify them from diagrams Name compounds from word equations and formulae Identify reactants and products in equations
15.	Chemical formulae and conservation of mass	 Interpret chemical formulae Apply conservation of mass to equations
16.	Comparing the reactivities of Group 1 and 7 elements	 Use electron configuration to explain the trends in reactivity in group 1 and 7 Compare the trends in reactivity in group 1 and 7

17.	Isotopes	Define an isotope
		 Compare isotopes based on information given
		 Calculate RAM of isotopes given their abundance and give answers to a specified number of significant figures or decimal places
18.	Isotopes case study lesson	 Describe the work of Marie Curie and Frederick Soddy and explain how their work contributed to our understanding of isotopes and the atomic model

Unit 3 Particle Model of Matter (FT)

Lesson number	Lesson question	Pupils will learn
1.	Density of solids	 Use an equation to calculate the density, mass or volume of an object Unit conversion (mass and volume)
2.	Density of liquids	 Describe how to measure the density of liquids Make and record accurate measurements Suggest possible sources of error and how to correct them
3.	Heating and cooling substances	 Describe heating and changes of state in terms of kinetic and potential energy stores Use the specific heat capacity equation to calculate any value given the others

4.	Latent heat	 Describe changes to particle arrangement and movement during a change of state
		 Describe latent heat of vaporisation and fusion and recognize them on a graph
		 Use an equation to calculate energy, mass or latent heat values
5.	Gas pressure	Use the particle model to explain gas pressure
		 Plot data to show the effect of temperature on gas pressure and describe the pattern shown
		 Explain why changing the temperature of a gas affects the pressure
5.	Density required practical	 Describe how to measure the density of regular and irregular solids
		Make and record accurate measurements
7.	Review (Part 1)	Recall definitions of key terms and use them correctly
		 Apply knowledge of key topics to exam questions
		Correct key misconceptions on this topic

8.	Particle models	 Describe the arrangement of particles in solids, liquids and gases, and represent them with accurate drawings Use the particle model to explain differences in
		properties of solids, liquids and gases
		Evaluate the particle models
9.	Internal energy	Define internal energy
		 Describe the two results of changing the internal energy of a system and recognize them on heating/cooling graphs
		 Plot secondary data for heating a substance
		 Describe heating and changes of state in terms of kinetic and potential energy stores
10.	Multi-Step energy calculations	 Use an equation to calculate energy, mass or latent heat values
		Complete multi-step energy calculations

Unit 4 Organisation (FT)

23 Lessons

Lesson number	Lesson question	Pupils will learn
1.	Heart disease	Describe some of the causes of heart disease
		 Explain how coronary heart disease can lead to a heart attack
		Evaluate treatments for heart disease
2.	Food tests	 Describe how to test for starch, sugars, proteins and fats
		 Describe the positive and negative results of these tests
		 Describe the safety precautions needed for food testing
3.	Investigating enzymes	Describe ways to measure the rate of enzyme action
		 Identify variables to change measure and control to test the effect of temperature on enzyme action
		 Describe and explain the effect of temperature on the rate of enzyme action

4.	The heart	 Label the major structures in the heart
		 Describe the path blood takes through the heart and around the body
		Calculate blood flow using appropriate equations
		 Describe how heart rate is controlled
•	Heart rate	Review the structure of the heart
		Describe the function of pacemaker cells
		Describe the role of artificial pacemakers
6.	Digestive enzymes	Describe the structure and function of the digestive system
		 Describe the action of enzymes in digestion using the 'lock and key' model
		 Name the 3 main digestive enzymes, where they are produced, and the substrate and products of their action
7.	Plant roots	Describe the structure of roots
		 Explain how roots are adapted for absorption of water and mineral ions

8.	Maths skills	 Describe the terms cardiac output, stroke volume and heart rate 		
		Calculate cardiac output, stroke volume and heart rate		
		 Use VESRAU to practice substitution and rearrangement (values, equation, substitute, rearrange, answer, units) 		
9.	Digestion	 Describe the organs of the digestive system and their function 		
		 Describe the purpose and action of acid and bile in the digestive system 		
10.	The lungs	Label the major structures in the lungs		
		Describe gaseous exchange		
		 Describe and explain how the lungs are adapted for efficient gaseous exchange. 		
11.	pH and enzymes (Part 1)	 Identify variables to change, measure and control to test a hypothesis 		
		Collect and record data accurately		
		 Process and display results appropriately 		
		 Describe and explain the effect of pH on enzyme activity 		

Review (Part 2)	 Review and consolidate knowledge of non- communicable diseases and plant tissues from the organisation unit
Exam technique	 Identifying the skills needed to answer describe, explain and evaluate questions
	 Practice answering describe, explain and evaluate questions
Blood and blood vessels	 Describe the components of the blood and their function
	Describe the structure and function of arteries and veins
	 Explain how blood components and blood vessels are adapted for their function
Maud Leonora Menten	 Introduction to the work of Maud Menten and her work on the Michaelis-Menten equation
Review (Part 1)	 Review and consolidate knowledge of the digestive system, lungs and heart from the organisation unit
	Exam technique Blood and blood vessels Maud Leonora Menten

17.	Transport in plants	 Describe the movement of water around the plant by transpiration
		 Describe the movement of dissolved sugars around the plant by translocation
		 Explain the role of xylem, phloem and stomata in transport in plants
18.	Investigating transpiration	 Describe factors that can affect the rate at which water moves
		Explain how rate of transpiration can be measured
		 Explain how changes in temperature, humidity, air movement and light intensity affect rates of water movement
19.	Absorption	Describe adaptations of digestive system for absorption
		 Explain how these adaptations aid absorption
		 Describe uses for the absorbed food particles
20.	pH and enzymes (Part 2)	Describe and explain the effect of pH on amylase activity
		 Suggest improvements to a method
		 Apply knowledge and understanding to secondary investigations

21.	Non-communicable disease	Describe some risk factors for diseases
		 Explain the impacts of lifestyle choices and disease at local, national and global levels
		 Analyse and interpret secondary data on disease incidence rates
22.	Cancer	Describe how cancer forms in the body
		 Describe the risk factors associated with cancer development
		 Explain the difference between 'benign' and 'malignant' tumours
		Explain how malignant cancer can spread
23.	Plant tissue	In this lesson we will look at how the tissues of the leaf are adapted to photosynthesis.

Unit 5 Bonding, structure and the properties of Matter (FT)

Lesson number	Lesson question	Pupils will learn
1.	Further ionic bonding	Describe the formation of an ionic bond
		 Represent ionic bonding using diagrams
		Write formula for ionic compounds
2.	Ionic bonding introduction	Describe the formation of ions
		 Link the charge of ions to the place in the periodic table
3.	Covalent bonding	Define a covalent bond
		 Draw and describe covalent bonds using structural, ball and stick and displayed formula
		Describe the limitations of the different models
4.	Simple covalent molecules	 Explain why some covalent substances form molecules and others form giant structures
		Describe the properties of simple covalent molecule
		 Explain their properties in terms of bonding

5.	The giant covalent structures	 Explain why some covalent substances form molecules and others form giant structures Describe the properties of diamond and graphite Explain the properties using knowledge of the bonding and structure Relate properties of these carbon allotropes to their uses
6.	Giant covalent structures: Graphene	 Describe the structure of graphene and fullerenes Describe and explain their properties Describe the work of the scientists who discovered graphene
7.	Solids, liquids and gases	 Predict the state of substances at different temperatures, and the type of bonding present given melting and boiling point data Describe what happens in terms of particles and forces during a change of state (Higher tier only) Explain the limitations of the particle model in relation to changes of state

8.	Review (Part 2)	Review ionic, covalent and metallic bonding
		Relate properties to their bonding
		Relate properties to their uses
9.	Metallic bonding	 Describe the structure and bonding of metals
		 Describe and explain the properties of metals
		• Explain why alloys are harder than pure metals
10.	Review (Part 1)	 Review the content covered on ionic and covalent bonding
		 Compare the properties of ionic and covalent substances
11.	Properties of ionic compounds	Describe some of the properties of ionic compounds
		 Explain some of the properties of ionic compounds using knowledge of the structure
12.	Polymers	Describe the structure of polymers
		Explain the properties of polymers
		Draw the formation of polymers given the monomer

Unit 6 Energy (FT)

13 Lessons

Lesson number	Lesson question	Pupils will learn
1.	Efficiency and reducing unwanted energy transfers	 Calculate efficiency from data or a Sankey diagram Describe ways of reducing unwanted energy transfers Explain a method for reducing unwanted energy transfers
2.	Specific heat capacity	 Explain what is meant by specific heat capacity Use the specific heat capacity equation to calculate unknown values
3.	Renewable energy resources	 Describe uses of renewable energy resources Describe advantages and disadvantages of renewable energy resources Evaluate the use of energy resources Compare the use of different energy resources

4.	The gravitational potential store	 Use an equation to calculate GPE, mass or height 	
		 Use values for GPE to calculate the theoretical velocity of an object 	
		 Explain why the maximum theoretical velocity is never actually reached 	
5.	Energy transfers	Name the 8 energy stores	
		 Describe the transfer of energy from one store to another, identifying pathways 	
		 Describe how energy is dissipated and calculate efficiency 	
6.	Case study: Esther Takeuchi	 Understand the key contributions of Esther Takeuchi to our understanding of energy 	
7.	Specific heat capacity required practical	 Explain the method steps used to find the specific heat capacity (SHC) of a substance 	
		 Plot a graph of results to determine specific heat capacity 	
		 Calculate the SHC of the blocks investigated 	
		Write a method for an alternative SHC investigation	

8.	Energy review	Correct misconceptions
		 Recall definitions of key terms and use them correctly
		 Apply understanding of key topics to exam style questions
9.	Non-Renewable energy resources	State the names of non-renewable energy resources
		Interpret data to compare energy usage
		 Consider the impact on the environment of non- renewables
10.	The kinetic energy store	Calculate the energy stored in a moving object
		Rearrange the equation to calculate velocity or mass
		 Change units where necessary and express answers to given numbers of significant figures
11.	The elastic potential store	Define an elastic object
		 Calculate the energy stored in a stretched or compressed object
		Describe the energy transfers in a bouncing object

12.	Conservation of energ

- Define the term 'system'
- Explain the law of conservation of energy.
- Apply conservation of energy to systems involving GPE and KE

13. Power

- Describe, using examples, what is meant by power
- Calculate power using energy transferred or work done
- Compare the power of different appliances or machines

Unit 7 Infection and response (FT)

Lesson number	Lesson question	Pupils will learn
1.	Viral and bacterial disease	 Describe the symptoms, spread and prevention of viral measles, HIV and TMV
		 Describe the symptoms, spread and prevention of bacterial diseases salmonella and gonorrhoea
		 Explain why antibiotics can be used to treat bacterial infections but not viral ones.
		 Process secondary data related to infection rates
2.	Testing drugs (Part 2)	Recap on stages of drug development
		 Explain the importance of carrying out a double-blind trial
3.	Immunity	 Describe how white blood cells respond to destroy pathogens
		 Explain the difference between the primary and secondary immune response
		Explain what is meant by immunity

4.	Review (Part 1)	 Review and consolidate knowledge of pathogens from the infection and response unit
5.	Review (Part 2)	 Review and consolidate knowledge of drug development and treating infection from the infection and response unit
6.	Antibiotics	 Explain the difference between antibiotics and over the counter medications
		 Collect data on the action of different antibiotics and process it appropriately
		Use data collected to draw conclusions
7.	Maths skills	 Calculate a mean, the area of clear zones and percentage changes
		Draw a conclusion from data
8.	Exam Skills	Identify command verbs and respond appropriately
		Apply knowledge to exam-style questions

9.	Infectious disease	 Name causes of some infectious diseases and describe how they make us ill Describe how pathogens can be spread, and how this spread can be reduced Describe the main defence mechanisms of the body
10.	Testing drugs (Part 1)	 Identify the source of digitalis, penicillin and aspirin Describe the stages in developing new drugs to treat disease Describe the use of placebos and explain why they are needed
11.	Fungal and protist disease	 Describe the symptoms, spread and prevention of rose black spot Describe the spread, symptoms and prevention of malaria Explain what is meant by the term 'vector'
12.	Vaccines	 Describe what is in a vaccine Explain how vaccines prevent infection Explain the advantages of large scale vaccination

13.

Unit 8 Quantitative Chemistry (FT)

Lesson number	Lesson question	Pupils will learn
1.	Reacting masses (FT only)	Apply conservation of mass to equations
		 Use a balanced equation to work out the quantity of reacting elements needed to produce a specified quantity of product
		 Predict the mass of product from a specified starting mass
2.	Review (FT only)	Review of foundation tier calculations content
3.	Relative formula mass (FT only)	 Use the periodic table and formulae to determine the relative formula mass of compounds
		Work out percentage of given elements in a compound
		 Work out the mass of a particular element in a given mass of a compound
4.	Balancing equations (FT only)	Write chemical formulae using knowledge of ion charges
		 Balance equations using the same number of atoms rule

5. Concentration

- Define the term 'concentration'
- Calculate concentration from mass and volume
- Work out the mass of a substance in a given volume of a solution of a known concentration

Unit 9 Electricity (FT)

Lesson number	Lesson question	Pupils will learn
1.	Diodes	Recognise and draw the symbol for a diode
		 Process secondary data and plot a graph of the data
2.	Review of electrical circuits	Correct misconceptions for electrical circuits
		Recall key definitions and equations
		 Apply understanding of key topics to exam style questions
3.	Electrical power (Part 1)	 Recall and apply the equation linking current, potential difference and power
		 Change units and the subject of equations where necessary
		 Recall and apply the equation to calculate power, current or resistance
		 Change units and the subject of equations where necessary

4.	Thermistors	 Draw a circuit diagram to illustrate how to test the resistance of a thermistor Process secondary data appropriately and use it to inform a conclusion Explain the use of thermistors as a thermostat
5.	Domestic electricity review	 Correct any misconceptions for domestic electricity Recall key information and definitions Apply understanding to exam style questions
6.	Drawing electrical circuits	Draw circuits, using correct common circuit symbols
7.	Electrical power (Part 2)	 Recall and apply the equation linking energy, power and time Recall and apply the equation linking charge, energy and potential difference

8.	Light dependent resistors	 Identify the variables to change, measure and control to test a hypothesis
		Collect and display results appropriately
		 Explain how resistance changes with light levels in a light-dependent resistor (LDR)
		 Explain how LDRs can be used to switch lights on when it gets dark
9.	Charge and current	Describe electrical current
		 Use the equation Q=It to calculate any value given the other two, changing units where necessary
10.	Parallel circuits	 Describe and apply the rules for potential difference (pd) and current in a parallel circuit
		 Describe the effect of adding resistors in parallel
		 Use Ohm's law to find pd, resistance or current in parallel circuits

11.	Resistance of a wire	 Identify the variables to change, measure and control to test a hypothesis
		 Collect and record measurements of current and potential difference for different lengths of wire
		Use the readings to calculate resistance in the wire
		 Plot a graph of the results
12.	Series and parallel circuits	Compare series and parallel circuits
		 Use Ohm's Law to find potential difference (pd), current and resistance in circuits
3.	Properties of resistors	Make and record measurements to find the pattern of resistance in a fixed resistor
		 Plot a graph of the data obtained
		 Describe and explain the relationship between current, potential difference and resistance in a fixed resistor
14.	Series circuits	 Predict current and potential difference (pd) in series circuits
		Describe the effect of adding resistors in series circuits
		 Use Ohm's Law to calculate current, resistance or pd

15.	Electrical resistance	 Describe what happens to current when potential difference and resistance are varied Use an equation linking potential difference, current and resistance to calculate any value given the other two
16.	Filament lamps	Make and record measurements to find the pattern of resistance in a filament lamp
		 Plot a graph of the data obtained
		 Calculate resistance for the values collected
		 Describe and explain the relationship between current, potential difference and resistance in a filament lamp
17.	Potential difference	 Describe what is meant by potential difference and resistance in circuits
		 Recall and apply the equation linking charge, energy and potential difference

18.	The	national	grid
-----	-----	----------	------

- Describe how electricity is transmitted in the national grid, naming the components
- Explain the use of transformers in the national grid
- Evaluate the use of underground or overhead cables
- (Higher tier) use a given equation to calculate current or pd given appropriate information

19. Domestic electricity

- Describe the features of UK mains supply and three core cable
- Explain the use of live, neutral and earth wires
- Explain the difference between direct and alternating potential difference

Unit 10 Bioenergetics (FT)

Lesson number	Lesson question	Pupils will learn
1.	End of topic review	 Review and consolidate knowledge of respiration and metabolism from the bioenergetics unit
2.	Maths Skills	 Practice calculating means, including identifying anomalies
3.	Photosynthesis	 Name the reactants and products needed for photosynthesis and represent it using a word and symbol equation
		 Describe uses for the glucose made during photosynthesis
		Carry out a test for starch and explain the results

Metabolism	 Describe and explain the effect of carbon dioxide concentration and temperature on the rate of photosynthesis Identify limiting factors from graphs Define the term metabolism
Metabolism	
Metabolism	Define the term metabolism
	 Give examples of reactions in metabolism
	Describe the formation of lipids, amino acids and urea
Exam Skills	 Apply knowledge of bioenergetics to exam style questions
Synoptic links	 Explain the importance of the digestive, respiratory and circulatory systems in effective respiration
Review photosynthesis	 Review and consolidate knowledge of photosynthesis from the bioenergitics unit so far.
	Synoptic links

9.	Respiration	 Define respiration and explain its importance in the body Describe some changes that occur in the body during exercise Explain why these changes are necessary
		. , , , , , , , , , , , , , , , , , , ,
10.	Photosynthesis required practical results	Collect the data in a suitable table
		 Describe and explain the relationship between light intensity and rate of photosynthesis
		 Describe and explain the effect of carbon dioxide concentration and temperature on the rate of photosynthesis
		 (Higher tier & triple biology only) Calculate the inverse square law
11.	Scientist case study-Ynes Mexia	 (Higher tier & triple biology only) Calculate the inverse square law
12.	Anaerobic respiration	Describe the consequences of anaerobic respiration
		 Explain the results of a simple experiment into anaerobic respiration
		Compare aerobic respiration with anaerobic respiration

13. Photosynthesis required practical

- Identify variables to change, measure and control to test a hypothesis

- Explain the steps in a given method to test a hypothesis
- Collect and record data to test a hypothesis

Unit 11 Chemical changes (FT)

Lesson number	Lesson question	Pupils will learn
1.	Displacement reactions of metals	 Explain how the reactivity of a metal is related to forming ions
		 Record observations on whether or not displacement reactions occur
		Write equations for displacement reactions
2.	Extraction of aluminium	Explain the use of electrolysis to extract metals
		 Describe the extraction of Aluminium from its ore, including the use of a mixture and the need to continually replace the anode
		 Explain why electrolysis is so expensive and describe measures that can be taken to reduce this
3.	Reactivity and acid base reactions review	 Review of the content on reactivity, acid base reactions and making salt
		 Define endothermic and exothermic reactions and give examples of each type

	applications of electrolysis	Roomes with electrolysis
		Describe and explain products at the electrodes
5.	Acid base reactions	 Write word equations to represent the reactions of metal oxides and acids
		 Explain steps in a given method to produce a pure, dry sample of a soluble salt
		 Use ion charges to write formulae for salts
6.	Acids, alkalis and the pH scale	 Describe the use of universal indicator to classify substances and measure approximate pH values
		 Evaluate the use of universal indicator and suggest why a pH probe may be more accurate
		 Write equations to represent the reaction of acids and alkalis, including the ionic equation
		 Process secondary data, calculating means and uncertainty
7.	Electrolysis review	 Review of learning on electrolysis, metal extraction and electrolysis of solutions

• Describe the work of Humphrey Davey and Laban

Humphry Davy and Laban Roomes

3.	Investigating the reactivity of metals	 Identify variables to change, measure and control to test the reactivity of metals
		 Write equations for the reactions of acids and metals, naming salts
		 Use observations to order metals in terms of reactivity
9. Elec	Electrolysis of solutions	 Predict the products of the electrolysis of given solutions
		 Electrolyse solutions of ionic compounds and identify the products
		Explain how the products are obtained
10.	Making salts	Suggest corrections to a given method to make a salt
		 Write a method to prepare a salt using a metal carbonate or metal oxide
		Write equations for the reactions
l .	Electrolysis of molten compounds	Define the terms 'electrolysis' and 'electrolytes'
		 Describe the movement of ions during electrolysis
		 Explain what happens at the electrodes during electrolysis

12.	Observations from acid base reactions	 Write equations to represent the reactions of metal carbonates and acids
		Describe evidence for a chemical reaction
		 Describe the test for carbon dioxide and its positive result
13.	Redox	Describe oxidation and reduction in terms of oxygen
		 Identify where oxidation and reduction have happened given an equation
		 Explain how carbon can be used to extract metals from their ores using redox reactions
14.	Developing an electrolysis hypothesis	Develop a hypothesis to test
		 Electrolyse given solutions, collecting and identifying the products
		Apply knowledge to other related hypotheses
15.	Writing a method	Describe the key features of method writing
		 Write a method to test a hypothesis and write a procedural method

Unit 12 Atomic Structure (FT)

Lesson number	Lesson question	Pupils will learn
1.	Isotopes and ionisation	 Explain how EM radiation can cause changes in electron arrangement or ionisation Compare isotopes in terms of their subatomic particles
2.	Decay equations	Write nuclear equations to represent decay
3.	History of atomic models	 Compare the nuclear model of the atoms with the plum pudding model
		 Describe how evidence led to changes in the atomic model
		 Explain why Rutherford's atomic model was readily accepted
4.	Exploring inside an atom	Describe the current atomic model

5.	Activity and half-life (FT)	 Describe what is meant by the radioactive half life of a sample
		 Plot a graph representing the number of decays in a sample
		 Determine half lives from information given
		Calculate net decline and express as a ratio
6.	Atomic structure review (Part 1)	Identify key misconceptions
		Apply understanding to exam questions
7.	Radioactivity	 Describe the effect of alpha, beta and gamma radiation on the nucleus
		Describe properties of alpha, beta and gamma radiation

8. Uses and hazards of radiation (Combined science only)

- Describe some uses and dangers of radioactive sources
- Explain the relative dangers in terms of properties and half lives
- Evaluate the use of radioactive sources for given situations
- Describe and identify examples of radioactive contamination and irradiation
- Compare the hazards associated with contamination and irradiation

Unit 13 Ecology (FT)

Lesson number	Lesson question	Pupils will learn
1.	Communities	 Identify examples of interdependence within an ecosystem
		 Predict the impact of changes to one species on the rest of the community
		 Extract and interpret information from charts, tables and graphs relating to interaction of organisms in a community
2.	Case Study: Dr Beth Penrose	 Introduction to the work of Dr Beth Penrose
3.	Biotic and Abiotic factors	 Identify biotic and abiotic factors within an ecosystem Explain how a change in a biotic or abiotic factor can affect a community Extract and interpret information from secondary data
		Extract and interpret information from Secondary data

4.	Adaptations	 Give examples of behavioural, structural or functional adaptations
		 Suggest factors that organisms are competing for given information
		 Identify and explain how organisms are adapted to live in their natural environment
5.	Sampling required practical (Part 1)	 Use a quadrat to collect valid data to estimate a population size
		 Describe how to make the data as accurate as possible
		Calculate population estimates
6.	Global warming	 Describe and explain ways in which humans affect ecosystems
		 Evaluate the data linking greenhouse gases to global warming
		 Describe some of the consequences of global warming
7.	Review (Part 1)	 Review of communities, biotic and abiotic factors, adaptation, and sampling

8.	Sampling required practical (Part 2)	 Calculate percentage cover of organisms
		Describe how to use a transect line to test a hypothesis
		 Process and interpret secondary data, identifying variables
9.	Review (Part 2)	Review of cycles, global warming, and biodiversity
Ю.	Cycles	 Describe the water cycle and explain its importance to living things
		 Describe the processes by which carbon is cycled through biotic and abiotic parts of ecosystems
1.	Biodiversity	Describe some impacts of humans on biodiversity
		Explain the importance of biodiversity
		 Describe ways that humans have tried to restore or maintain biodiversity
12.	Maths skills	Calculate surface area:volume ratio
		Calculate means and uncertainties

Unit 14 Energy changes (FT)

Lesson number	Lesson question	Pupils will learn
1.	Review combined	Review of the foundation and higher tier content
2.	Required Practical: Temperature change (Part 2)	 Draw conclusions from data provided Explain the changes in temperature during the experiment Evaluate the equipment and method used, explaining suggestions for improvement
3.	Exothermic and endothermic reactions	 Define endothermic and exothermic reactions and give examples of each type Describe some everyday uses of exothermic and endothermic reactions Evaluate applications of exothermic and endothermic reactions
4.	Case study	 Look at the scientists and engineers using endothermic and exothermic reactions in their work

5.	Required Practical: Temperature change (Part 1)	 Investigate one of the variables affecting the temperature change, identifying variables to change, measure and control Process and display results appropriately
6.	Energy level diagrams	 Draw and interpret energy level diagrams to represent endothermic and exothermic reactions Define activation energy and label it on a diagram Explain why reactions are endothermic or exothermic overall
7.	Writing a method to test a hypothesis	 Identify variables to change, measure and control Write a method to test a given hypothesis Design a table to collect and record results

Lesson number	Lesson question	Pupils will learn
1.	Magnetic fields	 Describe and draw the direction of the magnetic field around a bar magnet
		 Describe how to plot the magnetic field pattern of a magnet using a compass
		 Explain how the behaviour of a magnetic compass is related to evidence that the core of the Earth must be magnetic
2.	Magnetism Revision (Part 1)	 Identify key misconceptions from the magnetism unit Apply understanding of magnetism to exam questions
3.	Magnetism	 Describe what happens when poles of a magnet are brought together
		 Describe how to test to see if a material is magnetic or a magnet
		 Interpret secondary data on an experiment to test the variation in magnetic field
		Describe how the strength of a magnetic field varies

4. Electromagnetism

- Describe and draw the magnetic field around a wire carrying a current
- Describe the magnetic field in and around a solenoid
- Explain how the strength of the magnetic field can be varied

Unit 16 Homeostasis and response (FT)

Lesson number	Lesson question	Pupils will learn
1.	Hormonal responses	 Describe how the endocrine system brings about responses in the body
		 Label the main endocrine glands of the body
		Compare hormonal responses with nervous responses
2.	Homeostasis review (Foundation)	Review of homeostasis
3.	The nervous system and Homeostasis review lesson (Foundation)	Review of nervous system and homeostasis
4.	Contraception	 Describe how different methods of contraception prevent pregnancy
		 Interpret data on the effectiveness of contraception methods
		 Evaluate different hormonal and non-hormonal methods

5.	Controlling blood sugar levels (Foundation)	 Describe how blood glucose levels are monitored Explain the response to an increase in blood glucose Explain how insulin controls blood glucose levels in the body
6.	Scientist case study	Outline the work of Kiran Mazumdar-Shaw
7.	Reflex arcs	 Describe what is meant by a reflex and give some examples
		 Explain the difference between a reflex and a conscious action
		 Label a diagram of a reflex arc, using key terms correctly
		 Describe how nerve cells communicate with each other in a simple reflex action
8.	The nervous system	 Describe the role of receptors, neurons and effectors in responding to a stimulus
		 Describe an appropriate response pathway to any given stimulus

9.	Hormones in reproduction (Foundation)	 Describe the roles of male and female reproductive hormones Describe the menstrual cycle and the hormones
		involved
10.	Required practical: Reaction time (Part 2)	Decide on the reproducibility of class data
		Evaluate the method
		Describe and explain patterns in secondary data
11.	Required practical: Reaction time (Part 1)	 Identify the hypothesis and variables from a given method
		Collect and record data accurately
		 Process and display data collected (including uncertainties if appropriate)
12.	Diabetes	Compare Type 1 and Type 2 diabetes
		 Describe some treatments for both types of diabetes
		 Interpret data from graphs on the effect of insulin on blood glucose in people with diabetes

Unit 17 The rate and extent of chemical change (FT)

Lesson number	Lesson question	Pupils will learn
1.	Rate of reaction required practical (Part 1)	 Develop a hypothesis that can be tested Display data appropriately Describe and explain the effect of concentration on the rate of reaction
2.	The Rate and extent of chemical change: Review (Part 1)	Review of collision theory and rates of reaction
3.	Rate of reaction	 Describe evidence for a chemical reaction Describe how to measure rates of reaction Calculate the rate of the reaction from data or graphs
4.	Effect of changing surface area on rate of reaction	 Identify variables to change, measure and control to test a hypothesis Process and display data appropriately Use the data to describe and explain the effect of changing surface area on the rate of reaction

5.	Rate of reaction required practical (Part 2)	 Describe how to measure the rate of reaction using a change in colour or turbidity
		 Process and display data appropriately, explaining choice of graph
		 Describe and explain the effect of concentration on the rate of reaction
		Check for reproducibility in data collected
6.	Collision theory	Define activation energy
		Describe factors that can affect the rate of reaction
		 Explain how these factors affect rate using collision theory
7.	Catalysts	Describe what a catalyst is and how it affects the rate of a reaction
		Explain why more than one catalyst is often needed
		Describe the test for oxygen gas
		 Draw a reaction profile for a reaction with and without a catalyst

8.	Effect of changing pressure on rate of	Recognise reactions involving gases	
	reaction	 Describe and explain the effect of pressure on gaseous reaction 	
		Apply knowledge to novel reactions	
9.	Effect of changing temperature on rate of reaction	 Describe and explain the effect of temperature on rates of reaction, using particle theory 	
		 Interpret secondary data on the effect of temperature on the rate of reaction 	
		Explain the observations using particle theory	
10.	Reversible reactions	 Describe what is meant by a reversible reaction and how to represent it 	
		 Explain how reversible exothermic and endothermic reactions are linked 	
		Explain what is meant by 'dynamic equilibrium'	
11.	Planning an investigation to find rate of reaction	Write a method to test a hypothesis	
		Describe patterns in data	
		Explain patterns using collision theory	

Unit 18 Forces (FT)

Lesson number	Lesson question	Pupils will learn
1.	Newton's Laws	 Use Newton's second law to calculate force, mass or acceleration
		 Estimate the speed, accelerations and forces involved in large accelerations for everyday road transport
		 Recognise and use the symbol that indicates an approximate value
		 (Higher tier) Define and explain that what we mean by inertial mass
2.	Case Study: Sir Isaac Newton	Study the life and work of Sir Isaac Newton
3.	Acceleration Required Practical (Part 2)	Interpret graphs to make conclusions
		 Use the equation F=ma to calculate theoretical acceleration
		 Explain differences between experiment data and theoretical values
		 Calculate acceleration using speed and distance measurements

4.	Forces: an introduction	 Describe the difference between scalar and vector quantities
		 Describe forces as contact or non-contact and give examples
		 Describe the interaction between forces between pairs of objects
5.	Speed	 Explain what is meant by the term 'average speed'
		 Recall and apply a formula to calculate average speed, distance or time
6.	Combined science review	 Identify key misconceptions from the forces unit that are common to combined science and GCSE Physics courses
		 Apply key understanding from the forces unit to exam questions
7.	Forces and work	 Describe energy transfers when work is done, including the effect of work done against frictional forces
		 Calculate work done, force or distance given appropriate information
		Convert units where needed

8.	Forces and elasticity (Part 1)	 Identify variables to change, measure and control in a given hypothesis
		 Construct a table for result, including units
		 Explain the steps in the method to test a given hypothesis
		Collect and display data appropriately
9.	Velocity: Time Graphs	Draw velocity-time graphs from measurements
		 Interpret lines and slopes to determine acceleration
		 (Higher tier) Determine distance travelled by an object (or displacement of an object) from a velocity-time graph
10.	Stopping distance	 Identify and sort factors which could affect thinking or braking distance
		 Calculate the stopping distance of a vehicle using an equation
		Write a conclusion with values quoted
		 Rearrange the equation for stopping distance to calculate braking or thinking distance

11.	Acceleration Required Practical (Part 1)	 Describe a method for investigating how force or mass affects acceleration
		 Select appropriate apparatus for determining the acceleration of an object
		 Describe how to manage the risks associated with the practical
		Correctly calculate means
12.	Forces and elasticity (Part 2)	 Recall and use a formula to calculate extension, force or spring constant
		Process secondary data
		 Plot a graph of the data and use it to explain the limit of proportionality
		 Relate stretching and compression to work done and calculate this
13.	Weight, mass and gravity	Describe how to find and represent the centre of mass of an object
		 Describe the relationship between mass, weight and gravity
		 Use the mathematical relationship to calculate any value, given the other two

nal r-time ion in
ion in
raight
ts
examples
a circle
o า

17. Acceleration

- Calculate resultant forces
- Describe the effect of resultant forces on stationary and moving objects
- Calculate acceleration and use the correct units
- Use and manipulate the equation for uniform acceleration

Unit 19 Inheritance, variation and evolution (FT)

Lesson number	Lesson question	Pupils will learn
1.	Inherited disorders (Part 2)	Interpret family tree diagrams
		 Use family tree to calculate ther probability of offspring inheriting diseases
		 Evaluate the use of embryo screening for detecting inherited disorders
2.	Variation and natural selection (Part 1)	Describe reasons for extensive variation within species
		Describe the effects of mutations on variation
3.	Genetic engineering (Part 1)	Describe genetic engineering
		Give examples of genetically modified organisms
		 Explain some potential benefits and risks of genetic engineering in agriculture and medicine
4.	Variation and natural selection (Part 2)	Explain how variation can lead to evolution by natural selection

Genetic inheritance (Foundation)	 Construct and interpret genetic diagrams
	 Calculate the probability of inheriting particular characteristics given information about the parents
	 Use genetic terms to describe parents & offspring characteristics
Meiosis and fertilisation	Describe the main features of meiosis
	Compare mitosis with meiosis
	 Explain the importance of meiosis in sexual reproduction
Nancy Chang	 Outline the work of Nancy Chang, who sequenced the HIV genome
Evolution and extinction	 Describe the theory of evolution by natural selection Interpret evolutionary tree diagrams Explain why some organisms are now extinct
	Meiosis and fertilisation Nancy Chang

9.	Sexual vs. Asexual reproduction	 Describe sexual and asexual reproduction in animals and plants
		 Explain why asexual reproduction leads to identical offspring
		Explain why sexual reproduction leads to variation
10.	Classification	 Describe and apply the Linnaean system for classification
		 Explain why new models of classification have been proposed
		Describe the 'three domain' classification system
11.	End of topic review (Part 1)	 Review of natural selection, selective breeding and genetic engineering
12.	Mid-Topic review	 Review of meiosis, sexual and asexual reproduction, genes and inheritance

13.	Evidence for Evolution (Part 2)	 Describe how bacteria have evolved to become resistant to antibiotics
		 Describe ways of reducing the development of antibiotic resistant bacteria
		Evaluate the use of antibiotics in agriculture
14.	Genes, DNA and chromosomes	 Define and recognize diagrams of DNA, genes and chromosomes
		Describe the structure and function of DNA
		 Describe the advantages of understanding the human genome
15.	Selective breeding	Describe the process of selective breeding in plants and animals
		Explain the impact of selective breeding
		 Evaluate the use of selective breeding in food plants and domesticated animals
16.	Inherited disorders (Part 1 - Foundation)	Describe the symptoms of the genetic diseases cystic fibrosis & polydactyly
		 Use genetic cross diagrams to calculate probability of offspring inheriting these diseases

17. Sex determination

- Name and recognise the chromosomes that determine sex
- Construct and interpret diagrams to show how sex is inherited
- Interpret family tree diagrams to explain the pattern of inheritance

18. Evidence for Evolution (Part 1)

- Describe some of the ways fossils are produced
- Explain how this and other evidence gives us information about the development of life on earth
- Explain why we cannot be certain about how life on earth began

Unit 20 Organic Chemistry (FT)

Lesson number	Lesson question	Pupils will learn
1.	Fractional distillation	Describe how crude oil is separated into fractions
		 Describe trends in the physical and chemical properties of the fractions of crude oil
		 Describe uses for the different fractions of crude oil
2.	Crude oil and alkanes	Describe the composition of crude oil
		 Define and recognise hydrocarbons and recall their general formula
		 Draw and name the first four hydrocarbons
		 Describe trends in physical properties of the hydrocarbons
3.	Cracking	Explain why cracking is necessary
		 Describe the process and products of cracking
		 Describe the test for alkenes and its positive result
		Represent cracking using equations

4.	Review	(Part	1)
----	--------	-------	----

• A review of the key ideas from the first 4 lessons of the organic chemistry unit

5. Uses of hydrocarbons

- Write equations for the complete combustion of hydrocarbons, identifying oxidation
- Describe uses for the alkenes produced in cracking

Lesson number	Lesson question	Pupils will learn
1.	Infrared	 Identify variables to change, measure and control to test a hypothesis
		Collect and record data
		 Process data collected and use it to inform a conclusion
2.	Wave properties	 Identify the features of a longitudinal and transverse waves
		 Describe the production of longitudinal and transverse waves
		Compare light and sound waves
3.	Refraction	 Describe the effect of refraction at material interfaces Explain the process of refraction
4.	Combined science review	 Identifying key misconceptions across the combined science and physics only aspect of the topic
		 Apply understanding from the unit to exam questions

5.	Measuring the speed of waves in solids	 Explain the steps taken in measuring the speed of waves in solids Process data appropriately Describe how to minimise error in the readings
6.	Electromagnetic spectrum (Part 2)	 (Higher tier) explain why each wave is suitable for the application Describe the effect of different substances on Electromagnetic (EM) waves Describe some of the dangers of EM waves Draw conclusions from secondary data on the risks and consequences of exposure to radiation
7.	Measuring the speed of waves in water	 Explain the steps taken in measuring the speed of waves in water Process data appropriately Describe how to minimise error in the readings
8.	Electromagnetic spectrum (Part 1)	 Describe properties of the Electromagnetic (EM) spectrum waves Describe uses of each type of wave

9. Calculations with waves

- Calculate frequency from diagrams or given information
- Make and record measurements to calculate the speed of sound in air
- Use the wave equation to calculate speed, frequency or wavelength

Unit 22 Chemical analysis (FT)

Lesson number	Lesson question	Pupils will learn
1.	Chromatography	 Describe how to correctly use chromatography to separate mixtures
		 Interpret chromatograms to determine the contents of a provided mixture
2.	Testing gases	 Describe the tests for oxygen, carbon dioxide, hydrogen and chlorine and their positive results
		 Write and balance chemical equations to represent some of the reactions.
3.	Pure and impure formulations	 Identify pure and impure substances using diagrams or data
		 Describe how to test for purity
		 Describe and give examples of formulations

4.	Interpreting chromatograms	 Identify mistakes in practical set up and suggest how to rectify them
		 Interpret chromatography data, identifying pure substances and mixtures
		 Calculate Rf values and using significant figures appropriately
5.	Review (Part 1)	 A review of the key ideas from the first 4 lessons of the analysis unit

Unit 23 Chemistry of the atmosphere (FT)

Lesson number	Lesson question	Pupils will learn
1.	Climate change	Describe potential consequences of climate change
		 Define the carbon footprint in a range of contexts
		 Suggest ways of reducing carbon footprints in different contexts and why actions to reduce carbon footprints may be limited
2.	Review (Part 2)	 Review of global warming and the source and problems caused by named atmospheric pollutants
3.	Review (Part 1)	 Review of changes to the atmosphere and the greenhouse effect
4.	Alice Wilson	 A look at the work of geologist Alice Wilson and her contribution to our understanding of the evolution of the Earth

5.	The Greenhouse Effect	 Describe the greenhouse effect
		 Describe the reasons for and the impacts of increasing greenhouse gases on the temperature of the Earth's atmosphere
		 Evaluate the strength of the evidence for the link between CO2 levels and global temperature rise
6.	Maths Skills	 Describe and explain patterns in graphs Recap maths skills such as mean calculation
7.	Pollutants	 Describe how carbon monoxide, soot, sulphur dioxide and nitrogen oxides are produced and released into the atmosphere
		 Predict the products of the combustion of a fuel given appropriate information
		 Describe the problems caused by these pollutants

8. The Earth's atmosphere

- Compare the composition of Earth's early atmosphere with its current composition
- Describe and explain the changes in the composition of the atmosphere over Earth's history
- Evaluate different theories about the Earth's early atmosphere
- Describe and explain the formation of limestone, coal, crude oil and natural gas

Unit 24 Using Resources (FT)

Lesson number	Lesson question	Pupils will learn
1.	Safe drinking water	Distinguish between pure and potable water
		 Describe and explain the steps involved in the treatment of safe drinking water
		 Test water for pH and dissolved solid content, and calculate the concentration of dissolved solids
2.	Exam skills: Compare and evaluate	 Exam skills lesson focusing on the command verbs 'compare' and 'evaluate'
3.	Wastewater treatment	 State components of wastewater that can cause problems in the environment
		 Describe how wastewater is treated to make it safe to release into the environment
		 Compare the treatments of waste, ground and salt water in terms of ease of producing potable water
4.	Review lesson	Review the combined science content

5.	Life cycle assessments	 Describe some ways of reducing our use of finite resources
		Evaluate ways of reducing our use of limited resources
		 Carry out life cycle assessments given appropriate information
6.	Case study: Kitty Hach Darrow	 A look at the work of Kitty Hach Darrow on water purification methods
7.	Required practical on potable water	Describe methods of producing potable water from salty water
		 Describe how to carry out the distillation of a water sample
		 Describe the differences between the water samples before and after distillation and how to test for these
8.	Finite resources	State ways in which natural products are supported or replaced by man-made products
		 Extract and interpret information in charts, graphs and tables
		Evaluate the use of finite and renewable resources

9. The importance of recycling

- Describe ways of recycling
- Describe the impacts of recycling in terms of environmental impact and sustainable development

Combined Science Key Stage 4 - Higher

Curriculum document

1. Philosophy

Six underlying attributes at the heart of Oak's curriculum and lessons.

Knowledge and vocabulary is explicity taught across units and lessons so that pupils build on what they already know to develop powerful knowledge.

Knowledge is **sequenced** and mapped coherently so that pupils make meaningful connections

Curriculum **flexibility** enables schools to tailor their use of Oak to their curricula and context.

Addresses the needs of all learners through adherence to **accessibility** guidelines and requirements.

Rigorous application of the science of learning and best practise ensures learning is **informed by** evidence.

Commitment to **diversity** in our teaching, out teachers and in the language, texts and media we use so that all pupils feel positively represented.

2. Units

KS4 Combined Science is formed of 24 units and this is the recommended sequence:

Unit Title	Recommended year group	Number of lessons
1 Cell biology (HT)	Year 10	19
2 Atomic structure and periodic table (HT)	Year 10	19
3 Particle Model of Matter (HT)	Year 10	11
4 Organisation (HT)	Year 10	23
5 Bonding, structure and the properties of Matter (HT)	Year 10	12
6 Energy (HT)	Year 10	14
7 Infection and response (HT)	Year 10	13
8 Quantitative Chemistry (HT)	Year 10	8
9 Electricity (HT)	Year 10	20

10 Bioenergetics (HT)	Year 10	15
11 Chemical changes (HT)	Year 10	20
12 Atomic Structure (HT)	Year 10	8
13 Ecology (HT)	Year 10	12
14 Energy changes (HT)	Year 10	8
15 Magnetism (HT)	Year 10	7
16 Homeostasis and response (HT)	Year 11	14
17 The rate and extent of chemical change (HT)	Year 11	16
18 Forces (HT)	Year 11	18
19 Inheritance, variation and evolution (HT)	Year 11	19
20 Organic Chemistry (HT)	Year 11	5
21 Waves (HT)	Year 11	9

22 Chemical analysis (HT)	Year 11	5
23 Chemistry of the atmosphere (HT)	Year 11	8
24 Using Resources (HT)	Year 11	10

3. Lessons

Unit 1 Cell biology (HT)

19 Lessons

Lesson number	Lesson question	Pupils will learn
1.	Useful maths skills	 Calculate mean values Practice unit conversions, magnification calculation and percentage change
2.	Cell biology review (Part 2)	 Review and consolidate knowledge of cell transport from the cell biology unit
3.	Diffusion	 Describe how substances move in and out of cells by diffusion, giving examples Describe and explain factors that can affect the rate of diffusion
4.	Cell biology review (Part 1)	 Review and consolidate knowledge of cells from the cell biology unit

5.	Exchange surfaces and surface area to volume ratio	Calculate surface area to volume ratios
		 Explain the need for internal surfaces and circulatory systems in larger organisms
		 Describe and explain adaptations in plants and animals for the exchange of materials
6.	Case study and exam skills	Practice applying knowledge to exam-style questions
		Learn about the work of Dr Stephanie dancer
7.	Prokaryotic and Eukaryotic Cells	Describe the differences between eukaryotic and prokaryotic cells
		Practice identifying eukaryotic and prokaryotic cells
3.	Comparing of cells	Describe functions of subcellular structures
		Compare the functions of different cells
9.	Microscopes, magnification and resolution	Describe the differences between images produced by light and electron microscopes
		 Explain how electron microscopes have enhanced our understanding of cell structures and processes
		Explain what is meant by resolution and magnification

10.	Active transport	 Describe how substances are taken up by active transport Compare diffusion, osmosis and active transport Apply knowledge to exam questions
11.	Osmosis	 Define the term osmosis and give some examples in living things Explain the changes to both animal and plant cells when placed in different solutions
12.	Osmosis required practical (Part 1)	 Identify variables to change, measure and control to test a hypothesis Practice method writing and explain reasons for given method steps Make and record accurate mass measurements
13.	Specialised cells	 Describe specialised features of given cells Explain the reason for the special features in terms of the cells function Explain the importance of cell differentiation

14.	Order of magnitude calculations	 Convert mm to μm and vice versa Express numbers in standard form
15.	Using the microscope and magnification equation	 Describe how to use a microscope to view plant cells in focus Use the magnification equation to calculate the magnification, image or actual size
		 Change the units if necessary
16.	Viewing animal cells under the microscope and calculating magnification	 Find and view animal cells using a microscope Use the equation M=I/A to calculate any value given the other two Practice using scale to calculate magnification
17.	Cell cycle and mitosis	 Identify DNA, genes, chromosomes on a diagram Describe the main stages of the cell cycle Use information provided to calculate time spent in different phases of the cell cycle

18.	Stem	cells	and	their	uses

- Name sources of stem cells and their uses
- Describe some potential uses of stem cell technology
- Evaluate different stem cell sources

19. Osmosis required practical (Part 2)

- Measure change in mass accurately and calculate percentage change
- Display and interpret results appropriately
- Describe and explain the patterns in the results

Unit 2 Atomic structure and periodic table (HT)

Lesson number	Lesson question	Pupils will learn
1.	Mixtures, filtration and crystallisation	Define, identify and describe mixtures
		 Explain the steps in the separation of mixtures of soluble and insoluble substances
		 Explain how mixtures of soluble and insoluble substances are represented and recognised
2.	Separation by distillation	 Describe how to separate a mixture of two or more liquids, identifying key equipment
		Explain the processes and equipment involved
		Apply particle theory to distillation
3.	Separation by chromatography	Describe the process of chromatography
		 Carry out the chromatography of chlorophyll, explaining key steps
		Interpret chromatograms

4.	Atomic structure	Describe atoms using the nuclear model
		 State the charges and mass of the three subatomic particles
		 Use the periodic table to calculate the number of protons, neutrons and electrons for any given element
5.	Development of the atomic model	Describe the development of the atomic model
		 Compare the nuclear model with the plum pudding model
		 Explain how new evidence from the scattering experiment led to a change in the atomic model
	Electron Configuration and the Periodic	
6.	Table	 Describe what keeps electrons in their orbits
6.	_	 Describe what keeps electrons in their orbits Draw and write the electron configuration for any of the first 20 elements
6.	_	 Draw and write the electron configuration for any of the
7.	_	 Draw and write the electron configuration for any of the first 20 elements Describe the link between outer shell electron number,
	Table	 Draw and write the electron configuration for any of the first 20 elements Describe the link between outer shell electron number, number of shells and location in the periodic table

8.	Group 1	 Describe physical and chemical properties of the group 1 elements 	
		 Write equations to represent their reaction with water 	
		 Describe and explain trends in the properties and reactivity of group 1 elements 	
9.	Review (Part 2)	 Revision of separation techniques and the command words 'describe' and 'explain' in exam questions 	
10.	Group 7	 Describe trends in physical properties of group 7 elements 	
		 Explain the trend in physical properties of group 7 elements 	
11.	Displacement reactions: Ionic equations	Write ionic equations for the displacement reactions	
12.	Review (Part 1)	 Revision of atomic structure and the maths skills covered in the unit 	

13.	Group 7 Displacement	 Describe trends in reactivity going down group 7 	
		 Describe the results of a series of reactions of group 7 elements and their compounds 	
		 Write word and symbol equations to represent some reactions involving group 7 elements 	
14.	Why elements react	Explain the difference between metals and non-metals in terms of reactions and electrons	
		• Explain why group 0 do not react in terms of electrons	
		 Describe trends in physical properties of group 0 	
15.	Atoms, elements and compounds	 Define elements and compounds and identify them from diagrams 	
		Name compounds from word equations and formulae	
		Identify reactants and products in equations	
16.	Chemical formulae and conservation of	Interpret chemical formulae	
	mass	Apply conservation of mass to equations	

17.	Comparing the reactivities of Group 1 and 7 elements	 Use electron configuration to explain the trends in reactivity in group 1 and 7 Compare the trends in reactivity in group 1 and 7
18.	Isotopes	Define an isotope
		Compare isotopes based on information given
		 Calculate RAM of isotopes given their abundance and give answers to a specified number of significant figures or decimal places
19.	Isotopes case study lesson	 Describe the work of Marie Curie and Frederick Soddy and explain how their work contributed to our understanding of isotopes and the atomic model

Unit 3 Particle Model of Matter (HT)

Lesson number	Lesson question	Pupils will learn
1.	Density of solids	 Use an equation to calculate the density, mass or volume of an object Unit conversion (mass and volume)
2.	Density of liquids	 Describe how to measure the density of liquids Make and record accurate measurements Suggest possible sources of error and how to correct them
3.	Heating and cooling substances	 Describe heating and changes of state in terms of kinetic and potential energy stores Use the specific heat capacity equation to calculate any value given the others

4.	Latent heat	 Describe changes to particle arrangement and movement during a change of state
		 Describe latent heat of vaporisation and fusion and recognize them on a graph
		 Use an equation to calculate energy, mass or latent heat values
5.	Gas pressure	Use the particle model to explain gas pressure
		 Plot data to show the effect of temperature on gas pressure and describe the pattern shown
		 Explain why changing the temperature of a gas affects the pressure
6.	Case study: Joseph Black	Study the life and work of Joseph Black
7 .	Density required practical	 Describe how to measure the density of regular and irregular solids
		Make and record accurate measurements
8.	Review (Part 1)	Recall definitions of key terms and use them correctly
		 Apply knowledge of key topics to exam questions
		Correct key misconceptions on this topic

9.	Particle models	 Describe the arrangement of particles in solids, liquids and gases, and represent them with accurate drawings Use the particle model to explain differences in properties of solids, liquids and gases Evaluate the particle models
10.	Internal energy	 Define internal energy Describe the two results of changing the internal energy of a system and recognize them on heating/cooling graphs Plot secondary data for heating a substance Describe heating and changes of state in terms of kinetic and potential energy stores
11.	Multi-Step energy calculations	 Use an equation to calculate energy, mass or latent heat values Complete multi-step energy calculations

Unit 4 Organisation (HT)

23 Lessons

Lesson number	Lesson question	Pupils will learn
1.	Heart disease	Describe some of the causes of heart disease
		 Explain how coronary heart disease can lead to a heart attack
		Evaluate treatments for heart disease
2.	Food tests	 Describe how to test for starch, sugars, proteins and fats
		 Describe the positive and negative results of these tests
		 Describe the safety precautions needed for food testing
3.	Investigating enzymes	Describe ways to measure the rate of enzyme action
		 Identify variables to change measure and control to test the effect of temperature on enzyme action
		 Describe and explain the effect of temperature on the rate of enzyme action

4.	The heart	 Label the major structures in the heart
		 Describe the path blood takes through the heart and around the body
		 Calculate blood flow using appropriate equations
		Describe how heart rate is controlled
•	Heart rate	Review the structure of the heart
		 Describe the function of pacemaker cells
		Describe the role of artificial pacemakers
6.	Digestive enzymes	Describe the structure and function of the digestive system
		 Describe the action of enzymes in digestion using the 'lock and key' model
		 Name the 3 main digestive enzymes, where they are produced, and the substrate and products of their action
7.	Plant roots	Describe the structure of roots
		 Explain how roots are adapted for absorption of water and mineral ions

8.	Maths skills	 Describe the terms cardiac output, stroke volume and heart rate
		Calculate cardiac output, stroke volume and heart rate
		 Use VESRAU to practice substitution and rearrangement (values, equation, substitute, rearrange, answer, units)
9.	Digestion	 Describe the organs of the digestive system and their function
		 Describe the purpose and action of acid and bile in the digestive system
10.	The lungs	Label the major structures in the lungs
		Describe gaseous exchange
		 Describe and explain how the lungs are adapted for efficient gaseous exchange.
11.	pH and enzymes (Part 1)	 Identify variables to change, measure and control to test a hypothesis
		Collect and record data accurately
		 Process and display results appropriately
		 Describe and explain the effect of pH on enzyme activity

Review (Part 2)	 Review and consolidate knowledge of non- communicable diseases and plant tissues from the organisation unit
Exam technique	 Identifying the skills needed to answer describe, explain and evaluate questions
	 Practice answering describe, explain and evaluate questions
Blood and blood vessels	 Describe the components of the blood and their function
	Describe the structure and function of arteries and veins
	 Explain how blood components and blood vessels are adapted for their function
Maud Leonora Menten	 Introduction to the work of Maud Menten and her work on the Michaelis-Menten equation
Review (Part 1)	 Review and consolidate knowledge of the digestive system, lungs and heart from the organisation unit
	Exam technique Blood and blood vessels Maud Leonora Menten

17.	Transport in plants	 Describe the movement of water around the plant by transpiration
		 Describe the movement of dissolved sugars around the plant by translocation
		 Explain the role of xylem, phloem and stomata in transport in plants
18.	Investigating transpiration	 Describe factors that can affect the rate at which water moves
		 Explain how rate of transpiration can be measured
		 Explain how changes in temperature, humidity, air movement and light intensity affect rates of water movement
19.	Absorption	Describe adaptations of digestive system for absorption
		 Explain how these adaptations aid absorption
		 Describe uses for the absorbed food particles
20.	pH and enzymes (Part 2)	Describe and explain the effect of pH on amylase activity
		 Suggest improvements to a method
		 Apply knowledge and understanding to secondary investigations
		irivestigations

21.	Non-communicable disease	Describe some risk factors for diseases
		 Explain the impacts of lifestyle choices and disease at local, national and global levels
		 Analyse and interpret secondary data on disease incidence rates
22.	Cancer	Describe how cancer forms in the body
		 Describe the risk factors associated with cancer development
		 Explain the difference between 'benign' and 'malignant' tumours
		Explain how malignant cancer can spread
23.	Plant tissue	In this lesson we will look at how the tissues of the leaf are adapted to photosynthesis.

Unit 5 Bonding, structure and the properties of Matter (HT)

Lesson number	Lesson question	Pupils will learn
1.	Further ionic bonding	 Describe the formation of an ionic bond
		Represent ionic bonding using diagrams
		Write formula for ionic compounds
2.	Ionic bonding introduction	Describe the formation of ions
		• Link the charge of ions to the place in the periodic table
3.	Covalent bonding	Define a covalent bond
		 Draw and describe covalent bonds using structural, ball and stick and displayed formula
		Describe the limitations of the different models
4.	Simple covalent molecules	Explain why some covalent substances form molecules and others form giant structures
		 Describe the properties of simple covalent molecule
		 Explain their properties in terms of bonding

5.	The giant covalent structures	 Explain why some covalent substances form molecules and others form giant structures Describe the properties of diamond and graphite Explain the properties using knowledge of the bonding and structure Relate properties of these carbon allotropes to their uses
6.	Giant covalent structures: Graphene	 Describe the structure of graphene and fullerenes Describe and explain their properties Describe the work of the scientists who discovered graphene
7.	Solids, liquids and gases	 Predict the state of substances at different temperatures, and the type of bonding present given melting and boiling point data Describe what happens in terms of particles and forces during a change of state (Higher tier only) Explain the limitations of the particle model in relation to changes of state

8.	Review (Part 2)	Review ionic, covalent and metallic bonding
		Relate properties to their bonding
		Relate properties to their uses
9.	Metallic bonding	 Describe the structure and bonding of metals
		 Describe and explain the properties of metals
		• Explain why alloys are harder than pure metals
10.	Review (Part 1)	 Review the content covered on ionic and covalent bonding
		 Compare the properties of ionic and covalent substances
11.	Properties of ionic compounds	Describe some of the properties of ionic compounds
		 Explain some of the properties of ionic compounds using knowledge of the structure
12.	Polymers	Describe the structure of polymers
		Explain the properties of polymers
		Draw the formation of polymers given the monomer

Unit 6 Energy (HT)

14 Lessons

Lesson number	Lesson question	Pupils will learn
1.	Efficiency and reducing unwanted energy transfers	 Calculate efficiency from data or a Sankey diagram
		 Describe ways of reducing unwanted energy transfers
		 Explain a method for reducing unwanted energy transfers
2.	Specific heat capacity	Explain what is meant by specific heat capacity
		 Use the specific heat capacity equation to calculate unknown values
3.	Renewable energy resources	Describe uses of renewable energy resources
		 Describe advantages and disadvantages of renewable energy resources
		Evaluate the use of energy resources
		Compare the use of different energy resources

4.	The gravitational potential store	 Use an equation to calculate GPE, mass or height
		 Use values for GPE to calculate the theoretical velocity of an object
		 Explain why the maximum theoretical velocity is never actually reached
5.	Multi-Step calculations for the energy topic	 Choose correct equations to use in calculations Use multiple equations to solve single problems
6.	Energy transfers	Name the 8 energy stores
		 Describe the transfer of energy from one store to another, identifying pathways
		 Describe how energy is dissipated and calculate efficiency
7.	Case study: Esther Takeuchi	 Understand the key contributions of Esther Takeuchi to our understanding of energy

8.	Specific heat capacity required practical	 Explain the method steps used to find the specific hear capacity (SHC) of a substance 	
		 Plot a graph of results to determine specific heat capacity 	
		 Calculate the SHC of the blocks investigated 	
		Write a method for an alternative SHC investigation	
9.	Energy review	Correct misconceptions	
		Recall definitions of key terms and use them correctly	
		 Apply understanding of key topics to exam style questions 	
10.	Non-Renewable energy resources	State the names of non-renewable energy resources	
		Interpret data to compare energy usage	
		 Consider the impact on the environment of non- renewables 	
11.	The kinetic energy store	Calculate the energy stored in a moving object	
		Rearrange the equation to calculate velocity or mass	
		 Change units where necessary and express answers to given numbers of significant figures 	

12.	The elastic potential store	 Define an elastic object Calculate the energy stored in a stretched or compressed object Describe the energy transfers in a bouncing object
13.	Conservation of energy	 Define the term 'system' Explain the law of conservation of energy. Apply conservation of energy to systems involving GPE and KE
14.	Power	 Describe, using examples, what is meant by power Calculate power using energy transferred or work done Compare the power of different appliances or machines

Unit 7 Infection and response (HT)

Lesson number	Lesson question	Pupils will learn
1.	Viral and bacterial disease	 Describe the symptoms, spread and prevention of viral measles, HIV and TMV
		 Describe the symptoms, spread and prevention of bacterial diseases salmonella and gonorrhoea
		 Explain why antibiotics can be used to treat bacterial infections but not viral ones.
		 Process secondary data related to infection rates
2.	Testing drugs (Part 2)	Recap on stages of drug development
		 Explain the importance of carrying out a double-blind trial
3.	Immunity	 Describe how white blood cells respond to destroy pathogens
		 Explain the difference between the primary and secondary immune response
		Explain what is meant by immunity

4.	Review (Part 1)	 Review and consolidate knowledge of pathogens from the infection and response unit
5.	Review (Part 2)	 Review and consolidate knowledge of drug development and treating infection from the infection and response unit
6.	Antibiotics	 Explain the difference between antibiotics and over the counter medications
		 Collect data on the action of different antibiotics and process it appropriately
		Use data collected to draw conclusions
7.	Maths skills	 Calculate a mean, the area of clear zones and percentage changes
		Draw a conclusion from data
8.	Exam Skills	Identify command verbs and respond appropriately
		Apply knowledge to exam-style questions

9.	Infectious disease	 Name causes of some infectious diseases and describe how they make us ill 	
		 Describe how pathogens can be spread, and how this spread can be reduced 	
		Describe the main defence mechanisms of the body	
10.	Testing drugs (Part 1)	 Identify the source of digitalis, penicillin and aspirin 	
		 Describe the stages in developing new drugs to treat disease 	
		 Describe the use of placebos and explain why they are needed 	
11.	Fungal and protist disease	 Describe the symptoms, spread and prevention of rose black spot 	
		 Describe the spread, symptoms and prevention of malaria 	
		• Explain what is meant by the term 'vector'	
12.	Vaccines	Describe what is in a vaccine	
		Explain how vaccines prevent infection	
		 Explain the advantages of large scale vaccination 	

13.

Unit 8 Quantitative Chemistry (HT)

Lesson number	Lesson question	Pupils will learn
1.	Relative formula mass (FT only)	 Use the periodic table and formulae to determine the relative formula mass of compounds
		 Work out percentage of given elements in a compound
		 Work out the mass of a particular element in a given mass of a compound
2.	Review (HT only)	Review of higher tier calculations content
3.	Reacting masses (HT only)	 Predict the mass of product from a specified starting mass
		 Use a balanced equation to work out the quantity of reacting elements needed to produce a specified quantity of product

4.	Relative formula mass (HT only)	 Use the periodic table and formulae to determine the relative formula mass of compounds Work out percentage of given elements in a compound Work out the mass of a particular element in a given mass of a compound
5.	Balancing equations using moles (HT only)	 Write chemical formulae using knowledge of ion charges Balance equations using the same number of atoms rule Balance equations using moles
6.	Limiting reactants	 Define a limiting reactant Describe the effect of a limiting reactant on the amount of products it is possible to produce Calculate the limiting reactant from a balanced symbol equation
7.	Concentration	 Define the term 'concentration' Calculate concentration from mass and volume Work out the mass of a substance in a given volume of a solution of a known concentration

8. Moles and Avogadro's constant (HT only)

- Use Avogadro's constant to calculate number of atoms/molecules in a given mass
- Calculate the mass of a given number of atoms using the Avogadro constant

Unit 9 Electricity (HT)

20 Lessons

Lesson number	Lesson question	Pupils will learn
1.	Diodes	 Recognise and draw the symbol for a diode
		 Process secondary data and plot a graph of the data
2.	Review of electrical circuits	Correct misconceptions for electrical circuits
		Recall key definitions and equations
		 Apply understanding of key topics to exam style questions
3.	Electrical power (Part 1)	 Recall and apply the equation linking current, potential difference and power
		 Change units and the subject of equations where necessary
		 Recall and apply the equation to calculate power, current or resistance
		 Change units and the subject of equations where necessary

Multi-Step calculations	 Be able to solve problems using multi-step or multiple equations
Thermistors	Draw a circuit diagram to illustrate how to test the resistance of a thermistor
	 Process secondary data appropriately and use it to inform a conclusion
	Explain the use of thermistors as a thermostat
Domestic electricity review	Correct any misconceptions for domestic electricity
	Recall key information and definitions
	 Apply understanding to exam style questions
Drawing electrical circuits	Draw circuits, using correct common circuit symbols
Electrical power (Part 2)	 Recall and apply the equation linking energy, power and time
	 Recall and apply the equation linking charge, energy and potential difference
	Thermistors Domestic electricity review Drawing electrical circuits

9.	Light dependent resistors	 Identify the variables to change, measure and control to test a hypothesis
		 Collect and display results appropriately
		 Explain how resistance changes with light levels in a light-dependent resistor (LDR)
		 Explain how LDRs can be used to switch lights on when it gets dark
10.	Charge and current	Describe electrical current
		 Use the equation Q=It to calculate any value given the other two, changing units where necessary
11.	Parallel circuits	 Describe and apply the rules for potential difference (pd) and current in a parallel circuit
		 Describe the effect of adding resistors in parallel
		 Use Ohm's law to find pd, resistance or current in parallel circuits

12.	Resistance of a wire	 Identify the variables to change, measure and control to test a hypothesis
		 Collect and record measurements of current and potential difference for different lengths of wire
		 Use the readings to calculate resistance in the wire
		Plot a graph of the results
13.	Series and parallel circuits	Compare series and parallel circuits
		 Use Ohm's Law to find potential difference (pd), current and resistance in circuits
14.	Properties of resistors	Make and record measurements to find the pattern of resistance in a fixed resistor
		 Plot a graph of the data obtained
		 Describe and explain the relationship between current, potential difference and resistance in a fixed resistor
15.	Series circuits	 Predict current and potential difference (pd) in series circuits
		 Describe the effect of adding resistors in series circuits
		 Use Ohm's Law to calculate current, resistance or pd

16.	Electrical resistance	 Describe what happens to current when potential difference and resistance are varied Use an equation linking potential difference, current and resistance to calculate any value given the other two
17.	Filament lamps	 Make and record measurements to find the pattern of resistance in a filament lamp
		 Plot a graph of the data obtained
		 Calculate resistance for the values collected
		 Describe and explain the relationship between current, potential difference and resistance in a filament lamp
18.	Potential difference	 Describe what is meant by potential difference and resistance in circuits
		 Recall and apply the equation linking charge, energy and potential difference

19.	The national	grid
-----	--------------	------

- Describe how electricity is transmitted in the national grid, naming the components
- Explain the use of transformers in the national grid
- Evaluate the use of underground or overhead cables
- (Higher tier) use a given equation to calculate current or pd given appropriate information

20. Domestic electricity

- Describe the features of UK mains supply and three core cable
- Explain the use of live, neutral and earth wires
- Explain the difference between direct and alternating potential difference

Unit 10 Bioenergetics (HT)

Lesson number	Lesson question	Pupils will learn
1.	End of topic review	 Review and consolidate knowledge of respiration and metabolism from the bioenergetics unit
2.	Maths Skills	 Practice calculating means, including identifying anomalies
3.	Photosynthesis	 Name the reactants and products needed for photosynthesis and represent it using a word and symbol equation
		 Describe uses for the glucose made during photosynthesis
		Carry out a test for starch and explain the results
4.	Manipulating factors of photosynthesis HT	 Interpret graphs of photosynthesis rate with multiple factors and decide which is limiting
		 Describe some ways of manipulating conditions for plant growth
		Evaluate these methods

	 intensity and rate of photosynthesis Describe and explain the effect of carbon dioxide concentration and temperature on the rate of photosynthesis
	Identify limiting factors from graphs
Consequences of anaerobic respiration	Describe how an oxygen debt occurs
	 Explain the problems with an oxygen debt and how the body compensates in response
Metabolism	Define the term metabolism
	Give examples of reactions in metabolism
	Describe the formation of lipids, amino acids and urea
Exam Skills	Apply knowledge of bioenergetics to exam style questions
Synoptic links	 Explain the importance of the digestive, respiratory and circulatory systems in effective respiration
	Metabolism Exam Skills

Review photosynthesis	 Review and consolidate knowledge of photosynthesis from the bioenergitics unit so far.
Respiration	 Define respiration and explain its importance in the body
	 Describe some changes that occur in the body during exercise
	Explain why these changes are necessary
Photosynthesis required practical	Collect the data in a suitable table
resuits	 Describe and explain the relationship between light intensity and rate of photosynthesis
	 Describe and explain the effect of carbon dioxide concentration and temperature on the rate of photosynthesis
	 (Higher tier & triple biology only) Calculate the inverse square law
Scientist case study-Ynes Mexia	 (Higher tier & triple biology only) Calculate the inverse square law
	Respiration Photosynthesis required practical results

Review photosynthesis

10.

14. Anaerobic respiration

- Describe the consequences of anaerobic respiration
- Explain the results of a simple experiment into anaerobic respiration
- Compare aerobic respiration with anaerobic respiration

15. Photosynthesis required practical

- Identify variables to change, measure and control to test a hypothesis
- Explain the steps in a given method to test a hypothesis
- Collect and record data to test a hypothesis

Lesson number	Lesson question	Pupils will learn
1.	Displacement reactions of metals	 Explain how the reactivity of a metal is related to forming ions
		 Record observations on whether or not displacement reactions occur
		Write equations for displacement reactions
2.	Extraction of aluminium	Explain the use of electrolysis to extract metals
		 Describe the extraction of Aluminium from its ore, including the use of a mixture and the need to continually replace the anode
		 Explain why electrolysis is so expensive and describe measures that can be taken to reduce this
3.	Reactivity and acid base reactions review	 Review of the content on reactivity, acid base reactions and making salt
		 Define endothermic and exothermic reactions and give examples of each type

4.	Humphry Davy and Laban Roomes applications of electrolysis	 Describe the work of Humphrey Davey and Laban Roomes with electrolysis
		Describe and explain products at the electrodes
5.	Acid base reactions	 Write word equations to represent the reactions of metal oxides and acids
		 Explain steps in a given method to produce a pure, dry sample of a soluble salt
		Use ion charges to write formulae for salts
6.	Acids, alkalis and the pH scale	 Describe the use of universal indicator to classify substances and measure approximate pH values
		 Evaluate the use of universal indicator and suggest why a pH probe may be more accurate
		 Write equations to represent the reaction of acids and alkalis, including the ionic equation
		 Process secondary data, calculating means and uncertainty
7.	Chemical change higher tier review	 Revision of higher tier content in the unit, including redox and half equations and strong and weak acids

8.	Strong and weak acids	 Describe how to use an indicator to classify substances as strong or weak acids 	
		 Explain what strong, weak, concentrated and dilute acids are 	
		 Make order of magnitude calculations to describe changes in pH 	
9.	Electrolysis review	 Review of learning on electrolysis, metal extraction and electrolysis of solutions 	
10. Investigating the	Investigating the reactivity of metals	 Identify variables to change, measure and control to test the reactivity of metals 	
		 Write equations for the reactions of acids and metals, naming salts 	
	Use observations to order m	Use observations to order metals in terms of reactivity	
11.	Electrolysis of solutions	 Predict the products of the electrolysis of given solutions 	
		 Electrolyse solutions of ionic compounds and identify the products 	
		Explain how the products are obtained	

12.	Making salts	 Suggest corrections to a given method to make a salt
		 Write a method to prepare a salt using a metal carbonate or metal oxide
		Write equations for the reactions
13.	Electrolysis of molten compounds	Define the terms 'electrolysis' and 'electrolytes'
		 Describe the movement of ions during electrolysis
		 Explain what happens at the electrodes during electrolysis
14.	Observations from acid base reactions	 Write equations to represent the reactions of metal carbonates and acids
		Describe evidence for a chemical reaction
		 Describe the test for carbon dioxide and its positive result
15.	Redox	Describe oxidation and reduction in terms of oxygen
		 Identify where oxidation and reduction have happened given an equation
		 Explain how carbon can be used to extract metals from their ores using redox reactions

16.	Developing an electrolysis hypothesis	Develop a hypothesis to test
		 Electrolyse given solutions, collecting and identifying the products
		Apply knowledge to other related hypotheses
17.	Acid base ionic equations	Write balanced symbol equations for acid base reaction
		Write ionic equations for acid base reactions
18.	Redox (Higher tier)	Define redox in terms of electrons
		 Identify species that are oxidised or reduced in reactions
		Write half equations to represent the reactions
19.	Electrolysis half equations	Write ionic equations for the reactions at the electrodes
		Identify chemical species that are oxidised or reduced
20.	Writing a method	Describe the key features of method writing
		 Write a method to test a hypothesis and write a procedural method

Unit 12 Atomic Structure (HT)

Lesson number	Lesson question	Pupils will learn
1.	Activity and half-life (HT)	 Describe what is meant by the radioactive half life of a sample
		 Plot a graph representing the number of decays in a sample
		Determine half lives from information given
2.	Isotopes and ionisation	 Explain how EM radiation can cause changes in electron arrangement or ionisation
		 Compare isotopes in terms of their subatomic particles
3.	Decay equations	Write nuclear equations to represent decay
4.	History of atomic models	 Compare the nuclear model of the atoms with the plum pudding model
		 Describe how evidence led to changes in the atomic model
		 Explain why Rutherford's atomic model was readily accepted

5.	Exploring inside an atom	Describe the current atomic model
6.	Atomic structure review (Part 1)	Identify key misconceptionsApply understanding to exam questions
7.	Radioactivity	 Describe the effect of alpha, beta and gamma radiation on the nucleus Describe properties of alpha, beta and gamma radiation
8.	Uses and hazards of radiation (Combined science only)	 Describe some uses and dangers of radioactive sources Explain the relative dangers in terms of properties and half lives Evaluate the use of radioactive sources for given situations Describe and identify examples of radioactive contamination and irradiation Compare the hazards associated with contamination and irradiation

Unit 13 Ecology (HT)

Lesson number	Lesson question	Pupils will learn
1.	Communities	 Identify examples of interdependence within an ecosystem
		 Predict the impact of changes to one species on the rest of the community
		 Extract and interpret information from charts, tables and graphs relating to interaction of organisms in a community
2.	Case Study: Dr Beth Penrose	Introduction to the work of Dr Beth Penrose
3.	Biotic and Abiotic factors	Identify biotic and abiotic factors within an ecosystem
		 Explain how a change in a biotic or abiotic factor can affect a community
		Extract and interpret information from secondary data

4.	Adaptations	 Give examples of behavioural, structural or functional adaptations
		 Suggest factors that organisms are competing for given information
		 Identify and explain how organisms are adapted to live in their natural environment
5.	Sampling required practical (Part 1)	 Use a quadrat to collect valid data to estimate a population size
		 Describe how to make the data as accurate as possible
		Calculate population estimates
6.	Global warming	 Describe and explain ways in which humans affect ecosystems
		 Evaluate the data linking greenhouse gases to global warming
		Describe some of the consequences of global warming
7.	Review (Part 1)	 Review of communities, biotic and abiotic factors, adaptation, and sampling

8.	Sampling required practical (Part 2)	 Calculate percentage cover of organisms
		• Describe how to use a transect line to test a hypothesis
		 Process and interpret secondary data, identifying variables
9.	Review (Part 2)	Review of cycles, global warming, and biodiversity
0.	Cycles	 Describe the water cycle and explain its importance to living things
		 Describe the processes by which carbon is cycled through biotic and abiotic parts of ecosystems
1.	Biodiversity	Describe some impacts of humans on biodiversity
		Explain the importance of biodiversity
		 Describe ways that humans have tried to restore or maintain biodiversity
12.	Maths skills	Calculate surface area:volume ratio
		Calculate means and uncertainties

Unit 14 Energy changes (HT)

Lesson number	Lesson question	Pupils will learn
1.	Review combined	Review of the foundation and higher tier content
2.	Required Practical: Temperature change (Part 2)	 Draw conclusions from data provided Explain the changes in temperature during the experiment Evaluate the equipment and method used, explaining suggestions for improvement
3.	Exothermic and endothermic reactions	 Define endothermic and exothermic reactions and give examples of each type Describe some everyday uses of exothermic and endothermic reactions Evaluate applications of exothermic and endothermic reactions
4.	Case study	 Look at the scientists and engineers using endothermic and exothermic reactions in their work

5.	Calculating bond energies	 Calculate bond energy values and use them to predict whether a reaction will be exothermic or endothermic
		 Relate bond energies to the correct part of energy level diagrams
		 Explain why bond energy calculations have a margin of error
6.	Required Practical: Temperature change (Part 1)	 Investigate one of the variables affecting the temperature change, identifying variables to change, measure and control
		 Process and display results appropriately
7.	Energy level diagrams	 Draw and interpret energy level diagrams to represent endothermic and exothermic reactions
		Define activation energy and label it on a diagram
		 Explain why reactions are endothermic or exothermic overall
8.	Writing a method to test a hypothesis	Identify variables to change, measure and control
		Write a method to test a given hypothesis
		Design a table to collect and record results

Lesson number	Lesson question	Pupils will learn
1.	Magnetic fields	 Describe and draw the direction of the magnetic field around a bar magnet
		 Describe how to plot the magnetic field pattern of a magnet using a compass
		 Explain how the behaviour of a magnetic compass is related to evidence that the core of the Earth must be magnetic
2.	The motor effect and left hand rule	 Describe the motor effect and the factors that affect the size of the force on the conductor
		 Use Fleming's left hand rule to predict the direction of movement of a wire in a field
		 Use the equation linking force, magnetic flux density, current and length to calculate any value, changing units where appropriate
3.	Magnetism Revision (Part 1)	 Identify key misconceptions from the magnetism unit Apply understanding of magnetism to exam questions
		- Apply understanding of magnetism to exam questions

4.	DC Motors	 Explain how a DC motor works, using Fleming's left hand rule to predict the direction of rotation Explain the role of a commutator
5.	F = B x I x I	 Use the equation linking force, magnetic flux density, current and length to calculate any value, changing units where appropriate Combine equations to calculate missing values
6.	Magnetism	 Describe what happens when poles of a magnet are brought together Describe how to test to see if a material is magnetic or a magnet Interpret secondary data on an experiment to test the variation in magnetic field Describe how the strength of a magnetic field varies
7.	Electromagnetism	 Describe and draw the magnetic field around a wire carrying a current Describe the magnetic field in and around a solenoid Explain how the strength of the magnetic field can be varied

Unit 16 Homeostasis and response (HT)

Lesson number	Lesson question	Pupils will learn
1.	Homeostasis review (Higher)	Review of homeostasis
2.	Hormonal responses	 Describe how the endocrine system brings about responses in the body
		 Label the main endocrine glands of the body
		Compare hormonal responses with nervous responses
3.	Artificial control of fertility (Higher)	Describe how fertility drugs and IVF work
		Interpret secondary data on fertility treatments and IVF
		 Evaluate fertility treatments from the perspective of doctors and patients

4.	Contraception	 Describe how different methods of contraception prevent pregnancy
		 Interpret data on the effectiveness of contraception methods
		 Evaluate different hormonal and non-hormonal methods
5.	Scientist case study	Outline the work of Kiran Mazumdar-Shaw
6.	Negative feedback (Higher)	Describe the role of adrenaline and thyroxine in the body
		 Explain how negative feedback allows homeostasis to occur
7.	Reflex arcs	 Describe what is meant by a reflex and give some examples
		 Explain the difference between a reflex and a conscious action
		 Label a diagram of a reflex arc, using key terms correctly
		 Describe how nerve cells communicate with each other in a simple reflex action

8.	The nervous system	 Describe the role of receptors, neurons and effectors in responding to a stimulus Describe an appropriate response pathway to any given stimulus
9.	Required practical: Reaction time (Part 2)	 Decide on the reproducibility of class data Evaluate the method Describe and explain patterns in secondary data
10.	Controlling blood sugar levels (Higher)	 Describe how blood glucose levels are monitored Explain the response to an increase in blood glucose Explain how insulin controls blood glucose levels in the body Explain the role of glucagon in blood sugar level maintenance and how negative feedback is used
11.	Required practical: Reaction time (Part 1)	 Identify the hypothesis and variables from a given method Collect and record data accurately Process and display data collected (including uncertainties if appropriate)

12.	Hormones in reproduction (Higher)	 Describe the roles of male and female reproductive hormones
		 Describe the menstrual cycle and the hormones involved
		 Explain the interactions of FSH, LH, oestrogen and progesterone in the menstrual cycle
		 Extract and use information from graphs showing hormone levels
13.	Diabetes	• Compare Type 1 and Type 2 diabetes
		 Describe some treatments for both types of diabetes
		 Interpret data from graphs on the effect of insulin on blood glucose in people with diabetes
14.	The nervous system and Homeostasis review lesson (Higher)	Review of nervous system and homeostasis

Unit 17 The rate and extent of chemical change (HT)

Lesson number	Lesson question	Pupils will learn
1.	Le Chatelier's principle: Uses in industry	Explain the effect of changes in pressure on the equilibrium of gaseous reactions
		 Describe the conditions for optimum yield for a given reaction
		 Explain why optimum yield conditions are not always the ones chosen
2.	Rate of reaction required practical (Part	Develop a hypothesis that can be tested
		Display data appropriately
		Describe and explain the effect of concentration on the rate of reaction
3.	The Rate and extent of chemical change: Review (Part 1)	Review of collision theory and rates of reaction
4.	Rate of reaction	Describe evidence for a chemical reaction
		Describe how to measure rates of reaction
		Calculate the rate of the reaction from data or graphs

5.	Rate of reaction using graphs and tangents	Draw tangents to a curveUse the tangent to calculate rate of reaction
6.	Effect of changing surface area on rate of reaction	 Identify variables to change, measure and control to test a hypothesis
		 Process and display data appropriately
		 Use the data to describe and explain the effect of changing surface area on the rate of reaction
7.	Rate of reaction required practical (Part 2)	 Describe how to measure the rate of reaction using a change in colour or turbidity
		 Process and display data appropriately, explaining choice of graph
		Describe and explain the effect of concentration on the

rate of reaction

• Check for reproducibility in data collected

8.	Le Chatelier's principle: Effect of changing concentration and	 State and apply Le Chatelier's principle to any reversible reaction
	temperature	 Describe the effect on equilibrium of changes to temperature and concentration
		 Choose and explain the conditions needed to achieve a high yield
9.	The Rate and extent of chemical change: Review (Part 2)	 Review of higher tier content in the unit, including using tangents to calculate rates and Le Chatelier's principle
10.	Collision theory	Define activation energy
		Describe factors that can affect the rate of reaction
		 Explain how these factors affect rate using collision theory
11.	Catalysts	Describe what a catalyst is and how it affects the rate of a reaction
		 Explain why more than one catalyst is often needed
		 Describe the test for oxygen gas
		 Draw a reaction profile for a reaction with and without a catalyst

changing temperature on rate	 Describe and explain the effect of pressure on gaseous reaction Apply knowledge to novel reactions Describe and explain the effect of temperature on rates of reaction, using particle theory Interpret secondary data on the effect of temperature on the rate of reaction
	 Describe and explain the effect of temperature on rates of reaction, using particle theory Interpret secondary data on the effect of temperature
	of reaction, using particle theoryInterpret secondary data on the effect of temperature
	Explain the observations using particle theory
e reactions	 Describe what is meant by a reversible reaction and how to represent it
	 Explain how reversible exothermic and endothermic reactions are linked
	Explain what is meant by 'dynamic equilibrium'
	 Describe the effect on equilibrium of changes to pressure
ier's principle: Effect of pressure	

16. Planning an investigation to find rate of reaction

- Write a method to test a hypothesis
- Describe patterns in data
- Explain patterns using collision theory

Unit 18 Forces (HT)

Lesson number	Lesson question	Pupils will learn
1.	Momentum	State what is meant by momentum
		 Calculate the momentum of objects
		 Apply the conservation of momentum to collisions and explosions
2.	Newton's Laws	 Use Newton's second law to calculate force, mass or acceleration
		 Estimate the speed, accelerations and forces involved in large accelerations for everyday road transport
		 Recognise and use the symbol that indicates an approximate value
		 (Higher tier) Define and explain that what we mean by inertial mass
3.	Case Study: Sir Isaac Newton	Study the life and work of Sir Isaac Newton

4.	Acceleration Required Practical (Part 2)	Interpret graphs to make conclusions
		 Use the equation F=ma to calculate theoretical acceleration
		 Explain differences between experiment data and theoretical values
		 Calculate acceleration using speed and distance measurements
5.	Forces: an introduction	 Describe the difference between scalar and vector quantities
		 Describe forces as contact or non-contact and give examples
		 Describe the interaction between forces between pairs of objects
6.	Speed	Explain what is meant by the term 'average speed'
		 Recall and apply a formula to calculate average speed, distance or time

7.	Resolving forces (HT)	 Calculate resultant force of forces acting in a straight line
		 Describe the effect of resultant forces on objects
		 Describe scalar and vector quantities and give examples
		 Represent and interpret vector quantities using scale diagrams
		 Draw and interpret vector diagrams representing multiple forces
8.	Combined science review	 Identify key misconceptions from the forces unit that are common to combined science and GCSE Physics courses
		 Apply key understanding from the forces unit to exam questions
9.	Forces and work	 Describe energy transfers when work is done, including the effect of work done against frictional forces
		 Calculate work done, force or distance given appropriate information
		Convert units where needed

10.	Forces and elasticity (Part 1)	 Identify variables to change, measure and control in a given hypothesis Construct a table for result, including units Explain the steps in the method to test a given hypothesis Collect and display data appropriately
11.	Velocity: Time Graphs	 Draw velocity-time graphs from measurements Interpret lines and slopes to determine acceleration (Higher tier) Determine distance travelled by an object (or displacement of an object) from a velocity-time graph
12.	Stopping distance	 Identify and sort factors which could affect thinking or braking distance Calculate the stopping distance of a vehicle using an equation Write a conclusion with values quoted Rearrange the equation for stopping distance to calculate braking or thinking distance

13.	Acceleration Required Practical (Part 1)	 Describe a method for investigating how force or mass affects acceleration
		 Select appropriate apparatus for determining the acceleration of an object
		 Describe how to manage the risks associated with the practical
		Correctly calculate means
14.	Forces and elasticity (Part 2)	 Recall and use a formula to calculate extension, force or spring constant
		Process secondary data
		 Plot a graph of the data and use it to explain the limit of proportionality
		 Relate stretching and compression to work done and calculate this
15.	Weight, mass and gravity	 Describe how to find and represent the centre of mass of an object
		 Describe the relationship between mass, weight and gravity
		 Use the mathematical relationship to calculate any value, given the other two

16.	Terminal velocity	 Describe and recognise terminal velocity
		 Explain why falling objects have different terminal velocities
		 (Triple physics only) Draw and interpret velocity-time graphs for objects reaching terminal velocity
		 (Triple physics only) Interpret the changing motion in terms of the forces acting
17.	Distance: Time graphs	 Interpret distance time graphs and use them to calculate speed
		 (Higher tier) Explain qualitatively that motion in a circle involves constant speed but changing velocity
18.	Acceleration	Calculate resultant forces
		 Describe the effect of resultant forces on stationary and moving objects
		 Calculate acceleration and use the correct units
		 Use and manipulate the equation for uniform acceleration

Unit 19 Inheritance, variation and evolution (HT)

Lesson number	Lesson question	Pupils will learn
1.	Inherited disorders (Part 2)	Interpret family tree diagrams
		 Use family tree to calculate ther probability of offspring inheriting diseases
		 Evaluate the use of embryo screening for detecting inherited disorders
2.	Variation and natural selection (Part 1)	Describe reasons for extensive variation within species
		Describe the effects of mutations on variation
3.	Genetic engineering (Part 1)	Describe genetic engineering
		 Give examples of genetically modified organisms
		 Explain some potential benefits and risks of genetic engineering in agriculture and medicine
4.	Variation and natural selection (Part 2)	 Explain how variation can lead to evolution by natural selection

5.	Meiosis and fertilisation	 Describe the main features of meiosis
		Compare mitosis with meiosis
		 Explain the importance of meiosis in sexual reproduction
6.	Nancy Chang	Outline the work of Nancy Chang, who sequenced the HIV genome
7.	Evolution and extinction	Describe the theory of evolution by natural selection
		 Interpret evolutionary tree diagrams
		 Explain why some organisms are now extinct
8.	Sexual vs. Asexual reproduction	Describe sexual and asexual reproduction in animals and plants
		 Explain why asexual reproduction leads to identical offspring
		 Explain why sexual reproduction leads to variation

9.	Classification	 Describe and apply the Linnaean system for classification
		 Explain why new models of classification have been proposed
		Describe the 'three domain' classification system
10.	Inherited disorders (Part 1 - Higher)	 Describe the symptoms of the genetic diseases cystic fibrosis & polydactyly
		 Use genetic cross diagrams to calculate probability of offspring inheriting these diseases
11.	End of topic review (Part 1)	 Review of natural selection, selective breeding and genetic engineering
12.	Genetic Inheritance (Higher)	Construct and interpret genetic diagrams
		 Calculate the probability of inheriting particular characteristics given information about the parents
		 Use genetic terms to describe parents & offspring characteristics
13.	Mid-Topic review	 Review of meiosis, sexual and asexual reproduction, genes and inheritance
		80.100 0.100 1.100 1.100

14.	Evidence for Evolution (Part 2)	 Describe how bacteria have evolved to become resistant to antibiotics
		 Describe ways of reducing the development of antibiotic resistant bacteria
		Evaluate the use of antibiotics in agriculture
5.	Genes, DNA and chromosomes	 Define and recognize diagrams of DNA, genes and chromosomes
		 Describe the structure and function of DNA
		 Describe the advantages of understanding the human genome
l 6.	Selective breeding	 Describe the process of selective breeding in plants and animals
		Explain the impact of selective breeding
		 Evaluate the use of selective breeding in food plants and domesticated animals
17.	Genetic engineering (Part 2)	 Describe the process of producing a genetically modified organism
		Evaluate the use of genetic engineering

18. Sex determination

- Construct and interpret diagrams to show how sex is inherited
- Interpret family tree diagrams to explain the pattern of inheritance

19. Evidence for Evolution (Part 1)

- Describe some of the ways fossils are produced
- Explain how this and other evidence gives us information about the development of life on earth
- Explain why we cannot be certain about how life on earth began

Unit 20 Organic Chemistry (HT)

Lesson number	Lesson question	Pupils will learn
1.	Fractional distillation	Describe how crude oil is separated into fractions
		 Describe trends in the physical and chemical properties of the fractions of crude oil
		Describe uses for the different fractions of crude oil
2.	Crude oil and alkanes	Describe the composition of crude oil
		 Define and recognise hydrocarbons and recall their general formula
		 Draw and name the first four hydrocarbons
		 Describe trends in physical properties of the hydrocarbons
3.	Cracking	Explain why cracking is necessary
		 Describe the process and products of cracking
		 Describe the test for alkenes and its positive result
		Represent cracking using equations

• A review of the key ideas from the first 4 lessons of the organic chemistry unit

5. Uses of hydrocarbons

- Write equations for the complete combustion of hydrocarbons, identifying oxidation
- Describe uses for the alkenes produced in cracking

Lesson number	Lesson question	Pupils will learn
1.	Infrared	Identify variables to change, measure and control to test a hypothesis
		Collect and record data
		 Process data collected and use it to inform a conclusion
2.	Wave properties	 Identify the features of a longitudinal and transverse waves
		 Describe the production of longitudinal and transverse waves
		Compare light and sound waves
3.	Refraction	 Describe the effect of refraction at material interfaces Explain the process of refraction
4.	Combined science review	 Identifying key misconceptions across the combined science and physics only aspect of the topic Apply understanding from the unit to exam questions
		 Apply understanding from the unit to exam questions

5.	Measuring the speed of waves in solids	 Explain the steps taken in measuring the speed of waves in solids Process data appropriately Describe how to minimise error in the readings
6.	Electromagnetic spectrum (Part 2)	 (Higher tier) explain why each wave is suitable for the application Describe the effect of different substances on Electromagnetic (EM) waves Describe some of the dangers of EM waves Draw conclusions from secondary data on the risks and consequences of exposure to radiation
7.	Measuring the speed of waves in water	 Explain the steps taken in measuring the speed of waves in water Process data appropriately Describe how to minimise error in the readings
8.	Electromagnetic spectrum (Part 1)	 Describe properties of the Electromagnetic (EM) spectrum waves Describe uses of each type of wave

9. Calculations with waves

- Calculate frequency from diagrams or given information
- Make and record measurements to calculate the speed of sound in air
- Use the wave equation to calculate speed, frequency or wavelength

Unit 22 Chemical analysis (HT)

Lesson number	Lesson question	Pupils will learn
1.	Chromatography	 Describe how to correctly use chromatography to separate mixtures
		 Interpret chromatograms to determine the contents of a provided mixture
2.	Testing gases	 Describe the tests for oxygen, carbon dioxide, hydrogen and chlorine and their positive results
		 Write and balance chemical equations to represent some of the reactions.
3.	Pure and impure formulations	 Identify pure and impure substances using diagrams or data
		 Describe how to test for purity

4.	Interpreting chromatograms	 Identify mistakes in practical set up and suggest how to rectify them
		 Interpret chromatography data, identifying pure substances and mixtures
		 Calculate Rf values and using significant figures appropriately
5.	Review (Part 1)	 A review of the key ideas from the first 4 lessons of the analysis unit

Unit 23 Chemistry of the atmosphere (HT)

Lesson number	Lesson question	Pupils will learn
1.	Climate change	Describe potential consequences of climate change
		 Define the carbon footprint in a range of contexts
		 Suggest ways of reducing carbon footprints in different contexts and why actions to reduce carbon footprints may be limited
2.	Review (Part 2)	 Review of global warming and the source and problems caused by named atmospheric pollutants
3.	Review (Part 1)	 Review of changes to the atmosphere and the greenhouse effect
4.	Alice Wilson	 A look at the work of geologist Alice Wilson and her contribution to our understanding of the evolution of the Earth

5.	The Greenhouse Effect	 Describe the greenhouse effect
		 Describe the reasons for and the impacts of increasing greenhouse gases on the temperature of the Earth's atmosphere
		 Evaluate the strength of the evidence for the link between CO2 levels and global temperature rise
6.	Maths Skills	 Describe and explain patterns in graphs Recap maths skills such as mean calculation
7.	Pollutants	 Describe how carbon monoxide, soot, sulphur dioxide and nitrogen oxides are produced and released into the atmosphere
		 Predict the products of the combustion of a fuel given appropriate information
		 Describe the problems caused by these pollutants

8. The Earth's atmosphere

- Compare the composition of Earth's early atmosphere with its current composition
- Describe and explain the changes in the composition of the atmosphere over Earth's history
- Evaluate different theories about the Earth's early atmosphere
- Describe and explain the formation of limestone, coal, crude oil and natural gas

Unit 24 Using Resources (HT)

Lesson number	Lesson question	Pupils will learn
1.	Safe drinking water	Distinguish between pure and potable water
		 Describe and explain the steps involved in the treatment of safe drinking water
		 Test water for pH and dissolved solid content, and calculate the concentration of dissolved solids
2.	Exam skills: Compare and evaluate	 Exam skills lesson focusing on the command verbs 'compare' and 'evaluate'
3.	Wastewater treatment	 State components of wastewater that can cause problems in the environment
		 Describe how wastewater is treated to make it safe to release into the environment
		 Compare the treatments of waste, ground and salt water in terms of ease of producing potable water
4.	Review lesson	Review the combined science content

5.	Life cycle assessments	 Describe some ways of reducing our use of finite resources
		Evaluate ways of reducing our use of limited resources
		 Carry out life cycle assessments given appropriate information
6.	Case study: Kitty Hach Darrow	 A look at the work of Kitty Hach Darrow on water purification methods
7.	Required practical on potable water	Describe methods of producing potable water from salty water
		 Describe how to carry out the distillation of a water sample
		 Describe the differences between the water samples before and after distillation and how to test for these
8.	Finite resources	State ways in which natural products are supported or replaced by man-made products
		 Extract and interpret information in charts, graphs and tables
		Evaluate the use of finite and renewable resources

9.	Phytomining and bioleaching
----	-----------------------------

- Describe the processes of phytomining and bioleaching to extract metals
- Compare alternative methods of metal extraction using information given
- Link the processes to displacement and energy change graphs

10. The importance of recycling

- Describe ways of recycling
- Describe the impacts of recycling in terms of environmental impact and sustainable development

