Combined Science Key Stage 4 - Foundation **Curriculum document** ## 1. Philosophy # Six underlying attributes at the heart of Oak's curriculum and lessons. **Knowledge and vocabulary** is explicity taught across units and lessons so that pupils build on what they already know to develop powerful knowledge. Knowledge is **sequenced** and mapped coherently so that pupils make meaningful connections Curriculum **flexibility** enables schools to tailor their use of Oak to their curricula and context. Addresses the needs of all learners through adherence to **accessibility** guidelines and requirements. Rigorous application of the science of learning and best practise ensures learning is **informed by** evidence. Commitment to **diversity** in our teaching, out teachers and in the language, texts and media we use so that all pupils feel positively represented. ## 2. Units KS4 Combined Science is formed of 24 units and this is the recommended sequence: | Unit Title | Recommended
year group | Number of lessons | |--|---------------------------|-------------------| | 1 Cell biology (FT) | Year 10 | 19 | | 2 Atomic structure and periodic table (FT) | Year 10 | 18 | | 3 Particle Model of Matter (FT) | Year 10 | 10 | | 4 Organisation (FT) | Year 10 | 23 | | 5 Bonding, structure and the properties of Matter (FT) | Year 10 | 12 | | 6 Energy (FT) | Year 10 | 13 | | 7 Infection and response (FT) | Year 10 | 13 | | 8 Quantitative Chemistry (FT) | Year 10 | 5 | | 9 Electricity (FT) | Year 10 | 19 | | 10 Bioenergetics (FT) | Year 10 | 13 | |--|---------|----| | 11 Chemical changes (FT) | Year 10 | 15 | | 12 Atomic Structure (FT) | Year 10 | 8 | | 13 Ecology (FT) | Year 10 | 12 | | 14 Energy changes (FT) | Year 10 | 7 | | 15 Magnetism (FT) | Year 10 | 4 | | 16 Homeostasis and response (FT) | Year 11 | 12 | | 17 The rate and extent of chemical change (FT) | Year 11 | 11 | | 18 Forces (FT) | Year 11 | 17 | | 19 Inheritance, variation and evolution (FT) | Year 11 | 18 | | 20 Organic Chemistry (FT) | Year 11 | 5 | | 21 Waves (FT) | Year 11 | 9 | | 22 Chemical analysis (FT) | Year 11 | 5 | |-------------------------------------|---------|---| | 23 Chemistry of the atmosphere (FT) | Year 11 | 8 | | 24 Using Resources (FT) | Year 11 | 9 | ## 3. Lessons #### Unit 1 Cell biology (FT) #### 19 Lessons | Lesson
number | Lesson question | Pupils will learn | |------------------|------------------------------|--| | 1. | Useful maths skills | Calculate mean values Practice unit conversions, magnification calculation and percentage change | | 2. | Cell biology review (Part 2) | Review and consolidate knowledge of cell transport
from the cell biology unit | | 3. | Diffusion | Describe how substances move in and out of cells by diffusion, giving examples Describe and explain factors that can affect the rate of diffusion | | 4. | Cell biology review (Part 1) | Review and consolidate knowledge of cells from the cell
biology unit | | 5. | Exchange surfaces and surface area to volume ratio | Calculate surface area to volume ratios | |----|--|---| | | | Explain the need for internal surfaces and circulatory systems in larger organisms | | | | Describe and explain adaptations in plants and animals
for the exchange of materials | | 6. | Case study and exam skills | Practice applying knowledge to exam-style questions | | | | Learn about the work of Dr Stephanie dancer | | 7. | Prokaryotic and Eukaryotic Cells | Describe the differences between eukaryotic and prokaryotic cells | | | | Practice identifying eukaryotic and prokaryotic cells | | 3. | Comparing of cells | Describe functions of subcellular structures | | | | Compare the functions of different cells | | 9. | Microscopes, magnification and resolution | Describe the differences between images produced by light and electron microscopes | | | | Explain how electron microscopes have enhanced our
understanding of cell structures and processes | | | | Explain what is meant by resolution and magnification | | 10. | Active transport | Describe how substances are taken up by active transport Compare diffusion, osmosis and active transport Apply knowledge to exam questions | |-----|-------------------------------------|--| | 11. | Osmosis | Define the term osmosis and give some examples in living things Explain the changes to both animal and plant cells when placed in different solutions | | 12. | Osmosis required practical (Part 1) | Identify variables to change, measure and control to test
a hypothesis Practice method writing and explain reasons for given
method steps Make and record accurate mass measurements | | 13. | Specialised cells | Describe specialised features of given cells Explain the reason for the special features in terms of the cells function Explain the importance of cell differentiation | | 14. | Order of magnitude calculations | Convert mm to μm and vice versa Express numbers in standard form | |-----|---|---| | 15. | Using the microscope and magnification equation | Describe how to use a microscope to view plant cells in focus Use the magnification equation to calculate the magnification, image or actual size | | | | Change the units if necessary | | 16. | Viewing animal cells under the microscope and calculating magnification | Find and view animal cells using a microscope Use the equation M=I/A to calculate any value given the other two Practice using scale to calculate magnification | | 17. | Cell cycle and mitosis | Identify DNA, genes, chromosomes on a diagram Describe the main stages of the cell cycle Use information provided to calculate time spent in different phases of the cell cycle | | 18. | Stem | cells | and | their | uses | |-----|------|-------|-----|-------|------| | | | | | | | - Name sources of stem cells and their uses - Describe some potential uses of stem cell technology - Evaluate different stem cell sources #### **19.** Osmosis required practical (Part 2) - Measure change in mass accurately and calculate percentage change - Display and interpret results appropriately - Describe and explain the patterns in the results #### **Unit 2** Atomic structure and periodic table (FT) | Lesson
number | Lesson question | Pupils will learn | |------------------|--|--| | 1. | Mixtures, filtration and crystallisation | Define, identify and describe mixtures | | | | Explain the steps in the separation of mixtures of
soluble and insoluble substances | | | | Explain how mixtures of soluble and insoluble substances are represented and recognised | | 2. | Separation by distillation | Describe how to separate a mixture of two or more
liquids, identifying key equipment | | | | Explain the processes and equipment involved | | | | Apply particle theory to distillation | | 3. | Separation by chromatography | Describe the process of chromatography | | | | Carry out the chromatography of chlorophyll, explaining
key steps | | | | Interpret chromatograms | | | | | | 4. | Atomic structure | Describe atoms using the nuclear model | |----|---|--| | | | State the charges and mass of the three subatomic particles | | | | Use the periodic table to calculate the number of
protons, neutrons and electrons for any given element | | 5. | Development of the atomic model | Describe the development of the atomic model | | | | Compare the nuclear model with the plum pudding model | | | | Explain how new evidence from the scattering
experiment led to a change in the atomic model | | 6. | Electron Configuration and the Periodic Table | Describe what keeps electrons in their orbits | | | | Draw and write the electron configuration for any of the
first 20 elements | | | | Describe the link between outer shell electron number,
number of shells and location in the periodic table | | | | Humber of shells and location in the periodic table | | 7. | Periodic Table development | Describe the layout of the modern periodic table | | 7. | Periodic Table development | | | Group 1 | Describe physical and chemical properties of the
group
1 elements | |----------------------|--| | | Write equations to represent their reaction with water | | | Describe and explain trends in the properties and
reactivity of group 1 elements | | Review (Part 2) | Revision of separation techniques and the command
words 'describe' and 'explain' in exam questions | | Group 7 | Describe trends in physical properties of group 7 elements | | | Explain the trend in physical properties of group 7 elements | | Review (Part 1) | Revision of atomic structure and the maths skills
covered in the unit | | Group 7 Displacement | Describe trends in reactivity going down group 7 | | | Describe the results of a series of reactions of group 7
elements and their compounds | | | Write word and symbol equations to represent some
reactions involving group 7 elements | | | Review (Part 2) Group 7 Review (Part 1) | | 13. | Why elements react | Explain the difference between metals and non-metals in terms of reactions and electrons Explain why group 0 do not react in terms of electrons Describe trends in physical properties of group 0 | |-----|--|---| | 14. | Atoms, elements and compounds | Define elements and compounds and identify them from diagrams Name compounds from word equations and formulae Identify reactants and products in equations | | 15. | Chemical formulae and conservation of mass | Interpret chemical formulae Apply conservation of mass to equations | | 16. | Comparing the reactivities of Group 1 and 7 elements | Use electron configuration to explain the trends in reactivity in group 1 and 7 Compare the trends in reactivity in group 1 and 7 | | 17. | Isotopes | Define an isotope | |-----|----------------------------|---| | | | Compare isotopes based on information given | | | | Calculate RAM of isotopes given their abundance and
give answers to a specified number of significant figures
or decimal places | | 18. | Isotopes case study lesson | Describe the work of Marie Curie and Frederick Soddy
and explain how their work contributed to our
understanding of isotopes and the atomic model | #### **Unit 3 Particle Model of Matter (FT)** | Lesson
number | Lesson question | Pupils will learn | |------------------|--------------------------------|--| | 1. | Density of solids | Use an equation to calculate the density, mass or volume of an object Unit conversion (mass and volume) | | 2. | Density of liquids | Describe how to measure the density of liquids Make and record accurate measurements Suggest possible sources of error and how to correct them | | 3. | Heating and cooling substances | Describe heating and changes of state in terms of kinetic and potential energy stores Use the specific heat capacity equation to calculate any value given the others | | 4. | Latent heat | Describe changes to particle arrangement and
movement during a change of state | |----|----------------------------|--| | | | Describe latent heat of vaporisation and fusion and
recognize them on a graph | | | | Use an equation to calculate energy, mass or latent heat
values | | 5. | Gas pressure | Use the particle model to explain gas pressure | | | | Plot data to show the effect of temperature on gas
pressure and describe the pattern shown | | | | Explain why changing the temperature of a gas affects
the pressure | | 5. | Density required practical | Describe how to measure the density of regular and irregular solids | | | | Make and record accurate measurements | | 7. | Review (Part 1) | Recall definitions of key terms and use them correctly | | | | Apply knowledge of key topics to exam questions | | | | Correct key misconceptions on this topic | | 8. | Particle models | Describe the arrangement of particles in solids, liquids and gases, and represent them with accurate drawings Use the particle model to explain differences in | |-----|--------------------------------|---| | | | properties of solids, liquids and gases | | | | Evaluate the particle models | | 9. | Internal energy | Define internal energy | | | | Describe the two results of changing the internal energy
of a system and recognize them on heating/cooling
graphs | | | | Plot secondary data for heating a substance | | | | Describe heating and changes of state in terms of kinetic
and potential energy stores | | 10. | Multi-Step energy calculations | Use an equation to calculate energy, mass or latent heat values | | | | Complete multi-step energy calculations | ### **Unit 4 Organisation (FT)** #### 23 Lessons | Lesson
number | Lesson question | Pupils will learn | |------------------|-----------------------|---| | 1. | Heart disease | Describe some of the causes of heart disease | | | | Explain how coronary heart disease can lead to a heart attack | | | | Evaluate treatments for heart disease | | 2. | Food tests | Describe how to test for starch, sugars, proteins and fats | | | | Describe the positive and negative results of these tests | | | | Describe the safety precautions needed for food testing | | 3. | Investigating enzymes | Describe ways to measure the rate of enzyme action | | | | Identify variables to change measure and control to test
the effect of temperature on enzyme action | | | | Describe and explain the effect of temperature on the
rate of enzyme action | | | | | | 4. | The heart | Label the major structures in the heart | |----|-------------------|--| | | | Describe the path blood takes through the heart and
around the body | | | | Calculate blood flow using appropriate equations | | | | Describe how heart rate is controlled | | • | Heart rate | Review the structure of the heart | | | | Describe the function of pacemaker cells | | | | Describe the role of artificial pacemakers | | 6. | Digestive enzymes | Describe the structure and function of the digestive system | | | | Describe the action of enzymes in digestion using the
'lock and key' model | | | | Name the 3 main digestive enzymes, where they are
produced, and the substrate and products of their
action | | 7. | Plant roots | Describe the structure of roots | | | | Explain how roots are adapted for absorption of water
and mineral ions | | 8. | Maths skills | Describe the terms cardiac output, stroke volume and
heart rate | | | |-----|-------------------------|--|--|--| | | | Calculate cardiac output, stroke volume and heart rate | | | | | | Use VESRAU to practice substitution and rearrangement
(values, equation, substitute, rearrange, answer, units) | | | | 9. | Digestion | Describe the organs of the digestive system and their function | | | | | | Describe the purpose and action of acid and bile in the digestive system | | | | 10. | The lungs | Label the major structures in the lungs | | | | | | Describe gaseous exchange | | | | | | Describe and explain how the lungs are adapted for
efficient gaseous exchange. | | | | 11. | pH and enzymes (Part 1) | Identify variables to change, measure and control to test
a hypothesis | | | | | | Collect and record data accurately | | | | | | Process and display results appropriately | | | | | | Describe and explain the effect of pH on enzyme activity | | | | Review (Part 2) | Review and consolidate knowledge of non-
communicable diseases and plant tissues from the
organisation unit | |-------------------------
---| | Exam technique | Identifying the skills needed to answer describe, explain and evaluate questions | | | Practice answering describe, explain and evaluate questions | | Blood and blood vessels | Describe the components of the blood and their function | | | Describe the structure and function of arteries and veins | | | Explain how blood components and blood vessels are
adapted for their function | | Maud Leonora Menten | Introduction to the work of Maud Menten and her work
on the Michaelis-Menten equation | | Review (Part 1) | Review and consolidate knowledge of the digestive
system, lungs and heart from the organisation unit | | | Exam technique Blood and blood vessels Maud Leonora Menten | | 17. | Transport in plants | Describe the movement of water around the plant by transpiration | |-----|-----------------------------|---| | | | Describe the movement of dissolved sugars around the plant by translocation | | | | Explain the role of xylem, phloem and stomata in transport in plants | | 18. | Investigating transpiration | Describe factors that can affect the rate at which water
moves | | | | Explain how rate of transpiration can be measured | | | | Explain how changes in temperature, humidity, air
movement and light intensity affect rates of water
movement | | 19. | Absorption | Describe adaptations of digestive system for absorption | | | | Explain how these adaptations aid absorption | | | | Describe uses for the absorbed food particles | | 20. | pH and enzymes (Part 2) | Describe and explain the effect of pH on amylase activity | | | | Suggest improvements to a method | | | | Apply knowledge and understanding to secondary investigations | | | | | | 21. | Non-communicable disease | Describe some risk factors for diseases | |-----|--------------------------|---| | | | Explain the impacts of lifestyle choices and disease at
local, national and global levels | | | | Analyse and interpret secondary data on disease incidence rates | | 22. | Cancer | Describe how cancer forms in the body | | | | Describe the risk factors associated with cancer development | | | | Explain the difference between 'benign' and 'malignant'
tumours | | | | Explain how malignant cancer can spread | | 23. | Plant tissue | In this lesson we will look at how the tissues of the leaf are adapted to photosynthesis. | #### Unit 5 Bonding, structure and the properties of Matter (FT) | Lesson
number | Lesson question | Pupils will learn | |------------------|----------------------------|---| | 1. | Further ionic bonding | Describe the formation of an ionic bond | | | | Represent ionic bonding using diagrams | | | | Write formula for ionic compounds | | 2. | Ionic bonding introduction | Describe the formation of ions | | | | Link the charge of ions to the place in the periodic table | | 3. | Covalent bonding | Define a covalent bond | | | | Draw and describe covalent bonds using structural, ball
and stick and displayed formula | | | | Describe the limitations of the different models | | 4. | Simple covalent molecules | Explain why some covalent substances form molecules
and others form giant structures | | | | Describe the properties of simple covalent molecule | | | | Explain their properties in terms of bonding | | | | | | 5. | The giant covalent structures | Explain why some covalent substances form molecules and others form giant structures Describe the properties of diamond and graphite Explain the properties using knowledge of the bonding and structure Relate properties of these carbon allotropes to their uses | |----|-------------------------------------|--| | 6. | Giant covalent structures: Graphene | Describe the structure of graphene and fullerenes Describe and explain their properties Describe the work of the scientists who discovered graphene | | 7. | Solids, liquids and gases | Predict the state of substances at different temperatures, and the type of bonding present given melting and boiling point data Describe what happens in terms of particles and forces during a change of state (Higher tier only) Explain the limitations of the particle model in relation to changes of state | | 8. | Review (Part 2) | Review ionic, covalent and metallic bonding | |-----|-------------------------------|--| | | | Relate properties to their bonding | | | | Relate properties to their uses | | 9. | Metallic bonding | Describe the structure and bonding of metals | | | | Describe and explain the properties of metals | | | | • Explain why alloys are harder than pure metals | | 10. | Review (Part 1) | Review the content covered on ionic and covalent bonding | | | | Compare the properties of ionic and covalent substances | | 11. | Properties of ionic compounds | Describe some of the properties of ionic compounds | | | | Explain some of the properties of ionic compounds
using knowledge of the structure | | 12. | Polymers | Describe the structure of polymers | | | | Explain the properties of polymers | | | | Draw the formation of polymers given the monomer | | | | | #### **Unit 6 Energy (FT)** #### 13 Lessons | Lesson
number | Lesson question | Pupils will learn | |------------------|---|---| | 1. | Efficiency and reducing unwanted energy transfers | Calculate efficiency from data or a Sankey diagram Describe ways of reducing unwanted energy transfers Explain a method for reducing unwanted energy transfers | | 2. | Specific heat capacity | Explain what is meant by specific heat capacity Use the specific heat capacity equation to calculate unknown values | | 3. | Renewable energy resources | Describe uses of renewable energy resources Describe advantages and disadvantages of renewable energy resources Evaluate the use of energy resources Compare the use of different energy resources | | 4. | The gravitational potential store | Use an equation to calculate GPE, mass or height | | |-----------|---|---|--| | | | Use values for GPE to calculate the theoretical velocity of
an object | | | | | Explain why the maximum theoretical velocity is never actually reached | | | 5. | Energy transfers | Name the 8 energy stores | | | | | Describe the transfer of energy from one store to
another, identifying pathways | | | | | Describe how energy is dissipated and calculate efficiency | | | 6. | Case study: Esther Takeuchi | Understand the key contributions of Esther Takeuchi to
our understanding of energy | | | 7. | Specific heat capacity required practical | Explain the method steps used to find the specific heat
capacity (SHC) of a substance | | | | | Plot a graph of results to determine specific heat capacity | | | | | Calculate the SHC of the blocks investigated | | | | | Write a method for an alternative SHC investigation | | | 8. | Energy review | Correct misconceptions | |-----|--------------------------------|--| | | | Recall definitions of key terms and use them correctly | | | | Apply understanding of key topics to exam style questions | | 9. | Non-Renewable energy resources | State the names of non-renewable energy resources | | | | Interpret data to compare energy usage | | | | Consider the impact on the environment of non-
renewables | | 10. | The kinetic energy store | Calculate the energy stored in a moving object | | | | Rearrange the equation to calculate velocity or mass | | | | Change units where necessary and express answers to
given numbers of significant
figures | | 11. | The elastic potential store | Define an elastic object | | | | Calculate the energy stored in a stretched or compressed object | | | | Describe the energy transfers in a bouncing object | | 12. | Conservation of energ | |-----|-----------------------| | | | - Define the term 'system' - Explain the law of conservation of energy. - Apply conservation of energy to systems involving GPE and KE #### 13. Power - Describe, using examples, what is meant by power - Calculate power using energy transferred or work done - Compare the power of different appliances or machines ### **Unit 7** Infection and response (FT) | Lesson
number | Lesson question | Pupils will learn | |------------------|-----------------------------|--| | 1. | Viral and bacterial disease | Describe the symptoms, spread and prevention of viral
measles, HIV and TMV | | | | Describe the symptoms, spread and prevention of
bacterial diseases salmonella and gonorrhoea | | | | Explain why antibiotics can be used to treat bacterial
infections but not viral ones. | | | | Process secondary data related to infection rates | | 2. | Testing drugs (Part 2) | Recap on stages of drug development | | | | Explain the importance of carrying out a double-blind trial | | 3. | Immunity | Describe how white blood cells respond to destroy pathogens | | | | Explain the difference between the primary and secondary immune response | | | | Explain what is meant by immunity | | 4. | Review (Part 1) | Review and consolidate knowledge of pathogens from
the infection and response unit | |----|-----------------|--| | 5. | Review (Part 2) | Review and consolidate knowledge of drug development
and treating infection from the infection and response
unit | | 6. | Antibiotics | Explain the difference between antibiotics and over the counter medications | | | | Collect data on the action of different antibiotics and
process it appropriately | | | | Use data collected to draw conclusions | | 7. | Maths skills | Calculate a mean, the area of clear zones and percentage changes | | | | Draw a conclusion from data | | 8. | Exam Skills | Identify command verbs and respond appropriately | | | | Apply knowledge to exam-style questions | | | | | | 9. | Infectious disease | Name causes of some infectious diseases and describe how they make us ill Describe how pathogens can be spread, and how this spread can be reduced Describe the main defence mechanisms of the body | |-----|----------------------------|---| | 10. | Testing drugs (Part 1) | Identify the source of digitalis, penicillin and aspirin Describe the stages in developing new drugs to treat disease Describe the use of placebos and explain why they are needed | | 11. | Fungal and protist disease | Describe the symptoms, spread and prevention of rose black spot Describe the spread, symptoms and prevention of malaria Explain what is meant by the term 'vector' | | 12. | Vaccines | Describe what is in a vaccine Explain how vaccines prevent infection Explain the advantages of large scale vaccination | 13. ### **Unit 8 Quantitative Chemistry (FT)** | Lesson
number | Lesson question | Pupils will learn | |------------------|---------------------------------|---| | 1. | Reacting masses (FT only) | Apply conservation of mass to equations | | | | Use a balanced equation to work out the quantity of
reacting elements needed to produce a specified
quantity of product | | | | Predict the mass of product from a specified starting mass | | 2. | Review (FT only) | Review of foundation tier calculations content | | 3. | Relative formula mass (FT only) | Use the periodic table and formulae to determine the
relative formula mass of compounds | | | | Work out percentage of given elements in a compound | | | | Work out the mass of a particular element in a given
mass of a compound | | 4. | Balancing equations (FT only) | Write chemical formulae using knowledge of ion charges | | | | Balance equations using the same number of atoms rule | ### 5. Concentration - Define the term 'concentration' - Calculate concentration from mass and volume - Work out the mass of a substance in a given volume of a solution of a known concentration # **Unit 9 Electricity (FT)** | Lesson
number | Lesson question | Pupils will learn | |------------------|-------------------------------|---| | 1. | Diodes | Recognise and draw the symbol for a diode | | | | Process secondary data and plot a graph of the data | | 2. | Review of electrical circuits | Correct misconceptions for electrical circuits | | | | Recall key definitions and equations | | | | Apply understanding of key topics to exam style questions | | 3. | Electrical power (Part 1) | Recall and apply the equation linking current, potential difference and power | | | | Change units and the subject of equations where necessary | | | | Recall and apply the equation to calculate power,
current or resistance | | | | Change units and the subject of equations where necessary | | | | | | 4. | Thermistors | Draw a circuit diagram to illustrate how to test the resistance of a thermistor Process secondary data appropriately and use it to inform a conclusion Explain the use of thermistors as a thermostat | |----|-----------------------------|---| | 5. | Domestic electricity review | Correct any misconceptions for domestic electricity Recall key information and definitions Apply understanding to exam style questions | | 6. | Drawing electrical circuits | Draw circuits, using correct common circuit symbols | | 7. | Electrical power (Part 2) | Recall and apply the equation linking energy, power and time Recall and apply the equation linking charge, energy and potential difference | | 8. | Light dependent resistors | Identify the variables to change, measure and control to
test a hypothesis | |-----|---------------------------|--| | | | Collect and display results appropriately | | | | Explain how resistance changes with light levels in a
light-dependent resistor (LDR) | | | | Explain how LDRs can be used to switch lights on when it gets dark | | 9. | Charge and current | Describe electrical current | | | | Use the equation Q=It to calculate any value given the
other two, changing units where necessary | | 10. | Parallel circuits | Describe and apply the rules for potential difference
(pd) and current in a parallel circuit | | | | Describe the effect of adding resistors in parallel | | | | Use Ohm's law to find pd, resistance or current in parallel circuits | | 11. | Resistance of a wire | Identify the variables to change, measure and control to
test a hypothesis | |-----|------------------------------|--| | | | Collect and record measurements of current and
potential difference for different lengths of wire | | | | Use the readings to calculate resistance in the wire | | | | Plot a graph of the results | | 12. | Series and parallel circuits | Compare series and parallel circuits | | | | Use Ohm's Law to find potential difference (pd), current
and resistance in circuits | | 3. | Properties of resistors | Make and record measurements to find the pattern of resistance in a fixed resistor | | | | Plot a graph of the data obtained | | | | Describe and explain the relationship between current,
potential difference and resistance in a fixed resistor | | 14. | Series circuits | Predict current and potential difference (pd) in series circuits | | | | Describe the effect of adding resistors in series circuits | | | | Use Ohm's Law to calculate current, resistance or pd | | 15. | Electrical resistance | Describe what happens to current when potential difference and resistance are varied Use an equation linking
potential difference, current and resistance to calculate any value given the other two | |-----|-----------------------|---| | 16. | Filament lamps | Make and record measurements to find the pattern of resistance in a filament lamp | | | | Plot a graph of the data obtained | | | | Calculate resistance for the values collected | | | | Describe and explain the relationship between current,
potential difference and resistance in a filament lamp | | 17. | Potential difference | Describe what is meant by potential difference and resistance in circuits | | | | Recall and apply the equation linking charge, energy and
potential difference | | | | | | 18. | The | national | grid | |-----|-----|----------|------| |-----|-----|----------|------| - Describe how electricity is transmitted in the national grid, naming the components - Explain the use of transformers in the national grid - Evaluate the use of underground or overhead cables - (Higher tier) use a given equation to calculate current or pd given appropriate information #### 19. Domestic electricity - Describe the features of UK mains supply and three core cable - Explain the use of live, neutral and earth wires - Explain the difference between direct and alternating potential difference # **Unit 10 Bioenergetics (FT)** | Lesson
number | Lesson question | Pupils will learn | |------------------|---------------------|---| | 1. | End of topic review | Review and consolidate knowledge of respiration and
metabolism from the bioenergetics unit | | 2. | Maths Skills | Practice calculating means, including identifying anomalies | | 3. | Photosynthesis | Name the reactants and products needed for
photosynthesis and represent it using a word and
symbol equation | | | | Describe uses for the glucose made during
photosynthesis | | | | Carry out a test for starch and explain the results | | Metabolism | Describe and explain the effect of carbon dioxide concentration and temperature on the rate of photosynthesis Identify limiting factors from graphs Define the term metabolism | |-----------------------|--| | Metabolism | | | Metabolism | Define the term metabolism | | | | | | Give examples of reactions in metabolism | | | Describe the formation of lipids, amino acids and urea | | Exam Skills | Apply knowledge of bioenergetics to exam style questions | | Synoptic links | Explain the importance of the digestive, respiratory and circulatory systems in effective respiration | | Review photosynthesis | Review and consolidate knowledge of photosynthesis
from the bioenergitics unit so far. | | | Synoptic links | | 9. | Respiration | Define respiration and explain its importance in the body Describe some changes that occur in the body during exercise Explain why these changes are necessary | |-----|---|--| | | | . , , , , , , , , , , , , , , , , , , , | | 10. | Photosynthesis required practical results | Collect the data in a suitable table | | | | Describe and explain the relationship between light intensity and rate of photosynthesis | | | | Describe and explain the effect of carbon dioxide
concentration and temperature on the rate of
photosynthesis | | | | (Higher tier & triple biology only) Calculate the inverse
square law | | 11. | Scientist case study-Ynes Mexia | (Higher tier & triple biology only) Calculate the inverse
square law | | 12. | Anaerobic respiration | Describe the consequences of anaerobic respiration | | | | Explain the results of a simple experiment into
anaerobic respiration | | | | Compare aerobic respiration with anaerobic respiration | | | | | ## 13. Photosynthesis required practical - Identify variables to change, measure and control to test a hypothesis - Explain the steps in a given method to test a hypothesis - Collect and record data to test a hypothesis ## **Unit 11 Chemical changes (FT)** | Lesson
number | Lesson question | Pupils will learn | |------------------|---|---| | 1. | Displacement reactions of metals | Explain how the reactivity of a metal is related to forming ions | | | | Record observations on whether or not displacement reactions occur | | | | Write equations for displacement reactions | | 2. | Extraction of aluminium | Explain the use of electrolysis to extract metals | | | | Describe the extraction of Aluminium from its ore,
including the use of a mixture and the need to
continually replace the anode | | | | Explain why electrolysis is so expensive and describe
measures that can be taken to reduce this | | 3. | Reactivity and acid base reactions review | Review of the content on reactivity, acid base reactions
and making salt | | | | Define endothermic and exothermic reactions and give
examples of each type | | | applications of electrolysis | Roomes with electrolysis | |----|---------------------------------|--| | | | Describe and explain products at the electrodes | | 5. | Acid base reactions | Write word equations to represent the reactions of
metal oxides and acids | | | | Explain steps in a given method to produce a pure, dry
sample of a soluble salt | | | | Use ion charges to write formulae for salts | | 6. | Acids, alkalis and the pH scale | Describe the use of universal indicator to classify
substances and measure approximate pH values | | | | Evaluate the use of universal indicator and suggest why
a pH probe may be more accurate | | | | Write equations to represent the reaction of acids and
alkalis, including the ionic equation | | | | Process secondary data, calculating means and uncertainty | | 7. | Electrolysis review | Review of learning on electrolysis, metal extraction and electrolysis of solutions | • Describe the work of Humphrey Davey and Laban **Humphry Davy and Laban Roomes** | 3. | Investigating the reactivity of metals | Identify variables to change, measure and control to test
the reactivity of metals | |------------|--|--| | | | Write equations for the reactions of acids and metals,
naming salts | | | | Use observations to order metals in terms of reactivity | | 9. Elec | Electrolysis of solutions | Predict the products of the electrolysis of given solutions | | | | Electrolyse solutions of ionic compounds and identify
the products | | | | Explain how the products are obtained | | 10. | Making salts | Suggest corrections to a given method to make a salt | | | | Write a method to prepare a salt using a metal
carbonate or metal oxide | | | | Write equations for the reactions | | l . | Electrolysis of molten compounds | Define the terms 'electrolysis' and 'electrolytes' | | | | Describe the movement of ions during electrolysis | | | | Explain what happens at the electrodes during electrolysis | | 12. | Observations from acid base reactions | Write equations to represent the reactions of metal carbonates and acids | |-----|---------------------------------------|--| | | | Describe evidence for a chemical reaction | | | | Describe the test for carbon dioxide and its positive result | | 13. | Redox | Describe oxidation and reduction in terms of oxygen | | | | Identify where oxidation and reduction have happened given an equation | | | | Explain how carbon can be used to extract metals from
their ores using redox reactions | | 14. | Developing an electrolysis hypothesis | Develop a hypothesis to test | | | | Electrolyse given solutions, collecting and identifying the products | | | | Apply knowledge to other related hypotheses | | 15. | Writing a method | Describe the key features of method writing | | | | Write a method to test a hypothesis and write a procedural
method | ## **Unit 12 Atomic Structure (FT)** | Lesson
number | Lesson question | Pupils will learn | |------------------|--------------------------|--| | 1. | Isotopes and ionisation | Explain how EM radiation can cause changes in electron arrangement or ionisation Compare isotopes in terms of their subatomic particles | | 2. | Decay equations | Write nuclear equations to represent decay | | 3. | History of atomic models | Compare the nuclear model of the atoms with the plum pudding model | | | | Describe how evidence led to changes in the atomic model | | | | Explain why Rutherford's atomic model was readily accepted | | 4. | Exploring inside an atom | Describe the current atomic model | | 5. | Activity and half-life (FT) | Describe what is meant by the radioactive half life of a
sample | |----|----------------------------------|---| | | | Plot a graph representing the number of decays in a sample | | | | Determine half lives from information given | | | | Calculate net decline and express as a ratio | | | | | | 6. | Atomic structure review (Part 1) | Identify key misconceptions | | | | Apply understanding to exam questions | | 7. | Radioactivity | Describe the effect of alpha, beta and gamma radiation
on the nucleus | | | | Describe properties of alpha, beta and gamma radiation | # 8. Uses and hazards of radiation (Combined science only) - Describe some uses and dangers of radioactive sources - Explain the relative dangers in terms of properties and half lives - Evaluate the use of radioactive sources for given situations - Describe and identify examples of radioactive contamination and irradiation - Compare the hazards associated with contamination and irradiation ## Unit 13 Ecology (FT) | Lesson
number | Lesson question | Pupils will learn | |------------------|-----------------------------|---| | 1. | Communities | Identify examples of interdependence within an ecosystem | | | | Predict the impact of changes to one species on the rest
of the community | | | | Extract and interpret information from charts, tables
and graphs relating to interaction of organisms in a
community | | 2. | Case Study: Dr Beth Penrose | Introduction to the work of Dr Beth Penrose | | 3. | Biotic and Abiotic factors | Identify biotic and abiotic factors within an ecosystem Explain how a change in a biotic or abiotic factor can affect a community Extract and interpret information from secondary data | | | | Extract and interpret information from Secondary data | | 4. | Adaptations | Give examples of behavioural, structural or functional adaptations | |----|--------------------------------------|---| | | | Suggest factors that organisms are competing for given information | | | | Identify and explain how organisms are adapted to live
in their natural environment | | 5. | Sampling required practical (Part 1) | Use a quadrat to collect valid data to estimate a population size | | | | Describe how to make the data as accurate as possible | | | | Calculate population estimates | | 6. | Global warming | Describe and explain ways in which humans affect ecosystems | | | | Evaluate the data linking greenhouse gases to global warming | | | | Describe some of the consequences of global warming | | 7. | Review (Part 1) | Review of communities, biotic and abiotic factors,
adaptation, and sampling | | | | | | 8. | Sampling required practical (Part 2) | Calculate percentage cover of organisms | |-----|--------------------------------------|---| | | | Describe how to use a transect line to test a hypothesis | | | | Process and interpret secondary data, identifying variables | | 9. | Review (Part 2) | Review of cycles, global warming, and biodiversity | | Ю. | Cycles | Describe the water cycle and explain its importance to
living things | | | | Describe the processes by which carbon is cycled
through biotic and abiotic parts of ecosystems | | 1. | Biodiversity | Describe some impacts of humans on biodiversity | | | | Explain the importance of biodiversity | | | | Describe ways that humans have tried to restore or
maintain biodiversity | | 12. | Maths skills | Calculate surface area:volume ratio | | | | Calculate means and uncertainties | ## **Unit 14 Energy changes (FT)** | Lesson
number | Lesson question | Pupils will learn | |------------------|---|--| | 1. | Review combined | Review of the foundation and higher tier content | | 2. | Required Practical: Temperature change (Part 2) | Draw conclusions from data provided Explain the changes in temperature during the experiment Evaluate the equipment and method used, explaining suggestions for improvement | | 3. | Exothermic and endothermic reactions | Define endothermic and exothermic reactions and give examples of each type Describe some everyday uses of exothermic and endothermic reactions Evaluate applications of exothermic and endothermic reactions | | 4. | Case study | Look at the scientists and engineers using endothermic
and exothermic reactions in their work | | 5. | Required Practical: Temperature change (Part 1) | Investigate one of the variables affecting the temperature change, identifying variables to change, measure and control Process and display results appropriately | |----|---|---| | 6. | Energy level diagrams | Draw and interpret energy level diagrams to represent endothermic and exothermic reactions Define activation energy and label it on a diagram Explain why reactions are endothermic or exothermic overall | | 7. | Writing a method to test a hypothesis | Identify variables to change, measure and control Write a method to test a given hypothesis Design a table to collect and record results | | Lesson
number | Lesson question | Pupils will learn | |------------------|-----------------------------|--| | 1. | Magnetic fields | Describe and draw the direction of the magnetic field
around a bar magnet | | | | Describe how to plot the magnetic field pattern of a
magnet using a compass | | | | Explain how the behaviour of a magnetic compass is
related to evidence that the core of the Earth must be
magnetic | | 2. | Magnetism Revision (Part 1) | Identify key misconceptions from the magnetism unit Apply understanding of magnetism to exam questions | | 3. | Magnetism | Describe what happens when poles of a magnet are brought together | | | | Describe how to test to see if a material is magnetic or a magnet | | | | Interpret secondary data on an experiment to test the
variation in magnetic field | | | | Describe how the strength of a magnetic field varies | ### 4. Electromagnetism - Describe and draw the magnetic field around a wire carrying a current - Describe the magnetic field in and around a solenoid - Explain how the strength of the magnetic field can be varied ## **Unit 16 Homeostasis and response (FT)** | Lesson
number | Lesson question | Pupils will learn | |------------------|---|--| | 1. | Hormonal responses | Describe how the endocrine system brings about responses in the body | | | | Label the main endocrine glands of the body | | | | Compare hormonal responses with nervous responses | | 2. | Homeostasis review (Foundation) | Review of homeostasis | | 3. | The nervous system and Homeostasis review lesson (Foundation) | Review of nervous system and homeostasis | | 4. | Contraception | Describe how different methods of contraception prevent pregnancy | | | | Interpret data on the
effectiveness of contraception methods | | | | Evaluate different hormonal and non-hormonal methods | | | | | | 5. | Controlling blood sugar levels (Foundation) | Describe how blood glucose levels are monitored Explain the response to an increase in blood glucose Explain how insulin controls blood glucose levels in the body | |----|---|--| | 6. | Scientist case study | Outline the work of Kiran Mazumdar-Shaw | | 7. | Reflex arcs | Describe what is meant by a reflex and give some examples | | | | Explain the difference between a reflex and a conscious action | | | | Label a diagram of a reflex arc, using key terms correctly | | | | Describe how nerve cells communicate with each other
in a simple reflex action | | 8. | The nervous system | Describe the role of receptors, neurons and effectors in responding to a stimulus | | | | Describe an appropriate response pathway to any given
stimulus | | 9. | Hormones in reproduction (Foundation) | Describe the roles of male and female reproductive
hormones Describe the menstrual cycle and the hormones | |-----|--|--| | | | involved | | 10. | Required practical: Reaction time (Part 2) | Decide on the reproducibility of class data | | | | Evaluate the method | | | | Describe and explain patterns in secondary data | | 11. | Required practical: Reaction time (Part 1) | Identify the hypothesis and variables from a given method | | | | Collect and record data accurately | | | | Process and display data collected (including uncertainties if appropriate) | | 12. | Diabetes | Compare Type 1 and Type 2 diabetes | | | | Describe some treatments for both types of diabetes | | | | Interpret data from graphs on the effect of insulin on
blood glucose in people with diabetes | ## Unit 17 The rate and extent of chemical change (FT) | Lesson
number | Lesson question | Pupils will learn | |------------------|---|--| | 1. | Rate of reaction required practical (Part 1) | Develop a hypothesis that can be tested Display data appropriately Describe and explain the effect of concentration on the rate of reaction | | 2. | The Rate and extent of chemical change: Review (Part 1) | Review of collision theory and rates of reaction | | 3. | Rate of reaction | Describe evidence for a chemical reaction Describe how to measure rates of reaction Calculate the rate of the reaction from data or graphs | | 4. | Effect of changing surface area on rate of reaction | Identify variables to change, measure and control to test a hypothesis Process and display data appropriately Use the data to describe and explain the effect of changing surface area on the rate of reaction | | 5. | Rate of reaction required practical (Part 2) | Describe how to measure the rate of reaction using a
change in colour or turbidity | |----|--|--| | | | Process and display data appropriately, explaining choice of graph | | | | Describe and explain the effect of concentration on the
rate of reaction | | | | Check for reproducibility in data collected | | 6. | Collision theory | Define activation energy | | | | Describe factors that can affect the rate of reaction | | | | Explain how these factors affect rate using collision theory | | 7. | Catalysts | Describe what a catalyst is and how it affects the rate of a reaction | | | | Explain why more than one catalyst is often needed | | | | Describe the test for oxygen gas | | | | Draw a reaction profile for a reaction with and without a catalyst | | | | | | 8. | Effect of changing pressure on rate of | Recognise reactions involving gases | | |-----|--|--|--| | | reaction | Describe and explain the effect of pressure on gaseous reaction | | | | | Apply knowledge to novel reactions | | | 9. | Effect of changing temperature on rate of reaction | Describe and explain the effect of temperature on rates
of reaction, using particle theory | | | | | Interpret secondary data on the effect of temperature
on the rate of reaction | | | | | Explain the observations using particle theory | | | 10. | Reversible reactions | Describe what is meant by a reversible reaction and how
to represent it | | | | | Explain how reversible exothermic and endothermic reactions are linked | | | | | Explain what is meant by 'dynamic equilibrium' | | | 11. | Planning an investigation to find rate of reaction | Write a method to test a hypothesis | | | | | Describe patterns in data | | | | | Explain patterns using collision theory | | | | | | | ## **Unit 18 Forces (FT)** | Lesson
number | Lesson question | Pupils will learn | |------------------|--|--| | 1. | Newton's Laws | Use Newton's second law to calculate force, mass or acceleration | | | | Estimate the speed, accelerations and forces involved in
large accelerations for everyday road transport | | | | Recognise and use the symbol that indicates an approximate value | | | | (Higher tier) Define and explain that what we mean by inertial mass | | 2. | Case Study: Sir Isaac Newton | Study the life and work of Sir Isaac Newton | | 3. | Acceleration Required Practical (Part 2) | Interpret graphs to make conclusions | | | | Use the equation F=ma to calculate theoretical acceleration | | | | Explain differences between experiment data and theoretical values | | | | Calculate acceleration using speed and distance measurements | | 4. | Forces: an introduction | Describe the difference between scalar and vector quantities | |----|-------------------------|---| | | | Describe forces as contact or non-contact and give
examples | | | | Describe the interaction between forces between pairs of objects | | 5. | Speed | Explain what is meant by the term 'average speed' | | | | Recall and apply a formula to calculate average speed,
distance or time | | 6. | Combined science review | Identify key misconceptions from the forces unit that
are common to combined science and GCSE Physics
courses | | | | Apply key understanding from the forces unit to exam questions | | 7. | Forces and work | Describe energy transfers when work is done, including
the effect of work done against frictional forces | | | | Calculate work done, force or distance given appropriate information | | | | Convert units where needed | | 8. | Forces and elasticity (Part 1) | Identify variables to change, measure and control in a
given hypothesis | |-----|--------------------------------|---| | | | Construct a table for result, including units | | | | Explain the steps in the method to test a given
hypothesis | | | | Collect and display data appropriately | | 9. | Velocity: Time Graphs | Draw velocity-time graphs from measurements | | | | Interpret lines and slopes to determine acceleration | | | | (Higher tier) Determine distance travelled by an object
(or displacement of an object) from a velocity-time
graph | | 10. | Stopping distance | Identify and sort factors which could affect thinking or braking distance | | | | Calculate the stopping distance of a vehicle using an equation | | | | Write a conclusion with values quoted | | | | Rearrange the equation for stopping distance to
calculate braking or thinking distance | | | | | | 11. | Acceleration Required Practical (Part 1) | Describe a method for investigating how force or mass affects acceleration | |-----|--
---| | | | Select appropriate apparatus for determining the acceleration of an object | | | | Describe how to manage the risks associated with the
practical | | | | Correctly calculate means | | 12. | Forces and elasticity (Part 2) | Recall and use a formula to calculate extension, force or
spring constant | | | | Process secondary data | | | | Plot a graph of the data and use it to explain the limit of
proportionality | | | | Relate stretching and compression to work done and calculate this | | 13. | Weight, mass and gravity | Describe how to find and represent the centre of mass of an object | | | | Describe the relationship between mass, weight and gravity | | | | Use the mathematical relationship to calculate any
value, given the other two | | nal
r-time
ion in | |-------------------------| | | | ion in | | | | raight | | ts | | examples | | | | a circle | | o
า | ### 17. Acceleration - Calculate resultant forces - Describe the effect of resultant forces on stationary and moving objects - Calculate acceleration and use the correct units - Use and manipulate the equation for uniform acceleration ## Unit 19 Inheritance, variation and evolution (FT) | Lesson
number | Lesson question | Pupils will learn | |------------------|--|--| | 1. | Inherited disorders (Part 2) | Interpret family tree diagrams | | | | Use family tree to calculate ther probability of offspring
inheriting diseases | | | | Evaluate the use of embryo screening for detecting inherited disorders | | 2. | Variation and natural selection (Part 1) | Describe reasons for extensive variation within species | | | | Describe the effects of mutations on variation | | 3. | Genetic engineering (Part 1) | Describe genetic engineering | | | | Give examples of genetically modified organisms | | | | Explain some potential benefits and risks of genetic
engineering in agriculture and medicine | | 4. | Variation and natural selection (Part 2) | Explain how variation can lead to evolution by natural selection | | | | | | Genetic inheritance (Foundation) | Construct and interpret genetic diagrams | |----------------------------------|---| | | Calculate the probability of inheriting particular
characteristics given information about the parents | | | Use genetic terms to describe parents & offspring characteristics | | Meiosis and fertilisation | Describe the main features of meiosis | | | Compare mitosis with meiosis | | | Explain the importance of meiosis in sexual reproduction | | Nancy Chang | Outline the work of Nancy Chang, who sequenced the
HIV genome | | Evolution and extinction | Describe the theory of evolution by natural selection Interpret evolutionary tree diagrams Explain why some organisms are now extinct | | | Meiosis and fertilisation Nancy Chang | | 9. | Sexual vs. Asexual reproduction | Describe sexual and asexual reproduction in animals and plants | |-----|---------------------------------|---| | | | Explain why asexual reproduction leads to identical offspring | | | | Explain why sexual reproduction leads to variation | | 10. | Classification | Describe and apply the Linnaean system for
classification | | | | Explain why new models of classification have been proposed | | | | Describe the 'three domain' classification system | | 11. | End of topic review (Part 1) | Review of natural selection, selective breeding and genetic engineering | | 12. | Mid-Topic review | Review of meiosis, sexual and asexual reproduction,
genes and inheritance | | 13. | Evidence for Evolution (Part 2) | Describe how bacteria have evolved to become resistant
to antibiotics | |-----|---|--| | | | Describe ways of reducing the development of antibiotic resistant bacteria | | | | Evaluate the use of antibiotics in agriculture | | 14. | Genes, DNA and chromosomes | Define and recognize diagrams of DNA, genes and chromosomes | | | | Describe the structure and function of DNA | | | | Describe the advantages of understanding the human genome | | 15. | Selective breeding | Describe the process of selective breeding in plants and animals | | | | Explain the impact of selective breeding | | | | Evaluate the use of selective breeding in food plants and
domesticated animals | | 16. | Inherited disorders (Part 1 - Foundation) | Describe the symptoms of the genetic diseases cystic fibrosis & polydactyly | | | | Use genetic cross diagrams to calculate probability of
offspring inheriting these diseases | ### 17. Sex determination - Name and recognise the chromosomes that determine sex - Construct and interpret diagrams to show how sex is inherited - Interpret family tree diagrams to explain the pattern of inheritance #### 18. Evidence for Evolution (Part 1) - Describe some of the ways fossils are produced - Explain how this and other evidence gives us information about the development of life on earth - Explain why we cannot be certain about how life on earth began ## **Unit 20 Organic Chemistry (FT)** | Lesson
number | Lesson question | Pupils will learn | |------------------|-------------------------|---| | 1. | Fractional distillation | Describe how crude oil is separated into fractions | | | | Describe trends in the physical and chemical properties
of the fractions of crude oil | | | | Describe uses for the different fractions of crude oil | | 2. | Crude oil and alkanes | Describe the composition of crude oil | | | | Define and recognise hydrocarbons and recall their general formula | | | | Draw and name the first four hydrocarbons | | | | Describe trends in physical properties of the
hydrocarbons | | 3. | Cracking | Explain why cracking is necessary | | | | Describe the process and products of cracking | | | | Describe the test for alkenes and its positive result | | | | Represent cracking using equations | | | | | | 4. | Review | (Part | 1) | |----|--------|-------|----| |----|--------|-------|----| • A review of the key ideas from the first 4 lessons of the organic chemistry unit ### 5. Uses of hydrocarbons - Write equations for the complete combustion of hydrocarbons, identifying oxidation - Describe uses for the alkenes produced in cracking | Lesson
number | Lesson question | Pupils will learn | |------------------|-------------------------|---| | 1. | Infrared | Identify variables to change, measure and control to test
a hypothesis | | | | Collect and record data | | | | Process data collected and use it to inform a conclusion | | 2. | Wave properties | Identify the features of a longitudinal and transverse waves | | | | Describe the production of longitudinal and transverse waves | | | | Compare light and sound waves | | 3. | Refraction | Describe the effect of refraction at material interfaces Explain the process of refraction | | | | | | 4. | Combined science review | Identifying key misconceptions across the combined
science and physics only aspect of the topic | | | | Apply understanding from the unit to exam questions | | | | | | 5. | Measuring the speed of waves in solids | Explain the steps taken in measuring the speed of waves in solids Process data appropriately Describe how to minimise error in the readings | |----|--|---| | 6. | Electromagnetic spectrum (Part 2) | (Higher tier) explain why each wave is suitable for the application Describe the effect of different substances on Electromagnetic (EM) waves Describe some of the dangers of EM waves Draw conclusions from secondary data on the risks and consequences of exposure to radiation | | 7. | Measuring the speed of waves in water | Explain the steps taken in measuring the speed of waves in water Process data appropriately Describe how to minimise error in the readings | | 8. | Electromagnetic spectrum (Part
1) | Describe properties of the Electromagnetic (EM) spectrum waves Describe uses of each type of wave | ### 9. Calculations with waves - Calculate frequency from diagrams or given information - Make and record measurements to calculate the speed of sound in air - Use the wave equation to calculate speed, frequency or wavelength ## **Unit 22 Chemical analysis (FT)** | Lesson
number | Lesson question | Pupils will learn | |------------------|------------------------------|---| | 1. | Chromatography | Describe how to correctly use chromatography to separate mixtures | | | | Interpret chromatograms to determine the contents of a provided mixture | | 2. | Testing gases | Describe the tests for oxygen, carbon dioxide, hydrogen
and chlorine and their positive results | | | | Write and balance chemical equations to represent
some of the reactions. | | 3. | Pure and impure formulations | Identify pure and impure substances using diagrams or data | | | | Describe how to test for purity | | | | Describe and give examples of formulations | | 4. | Interpreting chromatograms | Identify mistakes in practical set up and suggest how to
rectify them | |----|----------------------------|---| | | | Interpret chromatography data, identifying pure
substances and mixtures | | | | Calculate Rf values and using significant figures appropriately | | 5. | Review (Part 1) | A review of the key ideas from the first 4 lessons of the
analysis unit | ## Unit 23 Chemistry of the atmosphere (FT) | Lesson
number | Lesson question | Pupils will learn | |------------------|-----------------|---| | 1. | Climate change | Describe potential consequences of climate change | | | | Define the carbon footprint in a range of contexts | | | | Suggest ways of reducing carbon footprints in different
contexts and why actions to reduce carbon footprints
may be limited | | 2. | Review (Part 2) | Review of global warming and the source and problems
caused by named atmospheric pollutants | | 3. | Review (Part 1) | Review of changes to the atmosphere and the greenhouse effect | | 4. | Alice Wilson | A look at the work of geologist Alice Wilson and her
contribution to our understanding of the evolution of
the Earth | | | | | | 5. | The Greenhouse Effect | Describe the greenhouse effect | |-----------|-----------------------|---| | | | Describe the reasons for and the impacts of increasing
greenhouse gases on the temperature of the Earth's
atmosphere | | | | Evaluate the strength of the evidence for the link
between CO2 levels and global temperature rise | | 6. | Maths Skills | Describe and explain patterns in graphs Recap maths skills such as mean calculation | | 7. | Pollutants | Describe how carbon monoxide, soot, sulphur dioxide
and nitrogen oxides are produced and released into the
atmosphere | | | | Predict the products of the combustion of a fuel given appropriate information | | | | Describe the problems caused by these pollutants | ### 8. The Earth's atmosphere - Compare the composition of Earth's early atmosphere with its current composition - Describe and explain the changes in the composition of the atmosphere over Earth's history - Evaluate different theories about the Earth's early atmosphere - Describe and explain the formation of limestone, coal, crude oil and natural gas ## **Unit 24 Using Resources (FT)** | Lesson
number | Lesson question | Pupils will learn | |------------------|-----------------------------------|--| | 1. | Safe drinking water | Distinguish between pure and potable water | | | | Describe and explain the steps involved in the treatment
of safe drinking water | | | | Test water for pH and dissolved solid content, and
calculate the concentration of dissolved solids | | 2. | Exam skills: Compare and evaluate | Exam skills lesson focusing on the command verbs
'compare' and 'evaluate' | | 3. | Wastewater treatment | State components of wastewater that can cause problems in the environment | | | | Describe how wastewater is treated to make it safe to
release into the environment | | | | Compare the treatments of waste, ground and salt
water in terms of ease of producing potable water | | 4. | Review lesson | Review the combined science content | | 5. | Life cycle assessments | Describe some ways of reducing our use of finite resources | |-----------|-------------------------------------|--| | | | Evaluate ways of reducing our use of limited resources | | | | Carry out life cycle assessments given appropriate information | | 6. | Case study: Kitty Hach Darrow | A look at the work of Kitty Hach Darrow on water purification methods | | 7. | Required practical on potable water | Describe methods of producing potable water from salty water | | | | Describe how to carry out the distillation of a water
sample | | | | Describe the differences between the water samples
before and after distillation and how to test for these | | 8. | Finite resources | State ways in which natural products are supported or replaced by man-made products | | | | Extract and interpret information in charts, graphs and tables | | | | Evaluate the use of finite and renewable resources | ### **9.** The importance of recycling - Describe ways of recycling - Describe the impacts of recycling in terms of environmental impact and sustainable development # **Combined Science Key Stage 4 - Higher** **Curriculum document** # 1. Philosophy # Six underlying attributes at the heart of Oak's curriculum and lessons. **Knowledge and vocabulary** is explicity taught across units and lessons so that pupils build on what they already know to develop powerful knowledge. Knowledge is **sequenced** and mapped coherently so that pupils make meaningful connections Curriculum **flexibility** enables schools to tailor their use of Oak to their curricula and context. Addresses the needs of all learners through adherence to **accessibility** guidelines and requirements. Rigorous application of the science of learning and best practise ensures learning is **informed by** evidence. Commitment to **diversity** in our teaching, out teachers and in the language, texts and media we use so that all pupils feel positively represented. ## 2. Units KS4 Combined Science is formed of 24 units and this is the recommended sequence: | Unit Title | Recommended
year group | Number of lessons | |--|---------------------------|-------------------| | 1 Cell biology (HT) | Year 10 | 19 | | 2 Atomic structure and periodic table (HT) | Year 10 | 19 | | 3 Particle Model of Matter (HT) | Year 10 | 11 | | 4 Organisation (HT) | Year 10 | 23 | | 5 Bonding, structure and the properties of Matter (HT) | Year 10 | 12 | | 6 Energy (HT) | Year 10 | 14 | | 7 Infection and response (HT) | Year 10 | 13 | | 8 Quantitative Chemistry (HT) | Year 10 | 8 | | 9 Electricity (HT) | Year 10 | 20 | | 10 Bioenergetics (HT) | Year 10 | 15 | |--|---------|----| | 11 Chemical changes (HT) | Year 10 | 20 | | 12 Atomic Structure (HT) | Year 10 | 8 | | 13 Ecology (HT) | Year 10 | 12 | | 14 Energy changes (HT) | Year 10 | 8 | | 15 Magnetism (HT) | Year 10 | 7 | | 16 Homeostasis and response (HT) | Year 11 | 14 | | 17 The rate and extent of chemical change (HT) | Year 11 | 16 | | 18 Forces (HT) | Year 11 | 18 | | 19 Inheritance, variation and evolution (HT) | Year 11 | 19 | | 20 Organic Chemistry (HT) | Year 11 | 5 | | 21 Waves (HT) | Year 11 | 9 | | 22 Chemical analysis (HT) | Year 11 | 5 | |-------------------------------------|---------|----| | 23 Chemistry of the atmosphere (HT) | Year 11 | 8 | | 24 Using Resources (HT) | Year 11 | 10 | ## 3. Lessons ## **Unit 1 Cell biology (HT)** ### 19 Lessons | Lesson
number | Lesson question | Pupils will learn | |------------------|------------------------------|--| | 1. | Useful maths skills | Calculate mean values Practice unit conversions, magnification calculation and percentage change | | 2. | Cell biology review (Part 2) | Review and consolidate knowledge of cell transport
from the cell biology unit | | 3. | Diffusion | Describe how substances move in and out of cells by diffusion,
giving examples Describe and explain factors that can affect the rate of diffusion | | 4. | Cell biology review (Part 1) | Review and consolidate knowledge of cells from the cell
biology unit | | 5. | Exchange surfaces and surface area to volume ratio | Calculate surface area to volume ratios | |----|--|---| | | | Explain the need for internal surfaces and circulatory systems in larger organisms | | | | Describe and explain adaptations in plants and animals
for the exchange of materials | | 6. | Case study and exam skills | Practice applying knowledge to exam-style questions | | | | Learn about the work of Dr Stephanie dancer | | 7. | Prokaryotic and Eukaryotic Cells | Describe the differences between eukaryotic and prokaryotic cells | | | | Practice identifying eukaryotic and prokaryotic cells | | 3. | Comparing of cells | Describe functions of subcellular structures | | | | Compare the functions of different cells | | 9. | Microscopes, magnification and resolution | Describe the differences between images produced by light and electron microscopes | | | | Explain how electron microscopes have enhanced our
understanding of cell structures and processes | | | | Explain what is meant by resolution and magnification | | 10. | Active transport | Describe how substances are taken up by active transport Compare diffusion, osmosis and active transport Apply knowledge to exam questions | |-----|-------------------------------------|--| | 11. | Osmosis | Define the term osmosis and give some examples in living things Explain the changes to both animal and plant cells when placed in different solutions | | 12. | Osmosis required practical (Part 1) | Identify variables to change, measure and control to test
a hypothesis Practice method writing and explain reasons for given
method steps Make and record accurate mass measurements | | 13. | Specialised cells | Describe specialised features of given cells Explain the reason for the special features in terms of the cells function Explain the importance of cell differentiation | | 14. | Order of magnitude calculations | Convert mm to μm and vice versa Express numbers in standard form | |-----|---|---| | 15. | Using the microscope and magnification equation | Describe how to use a microscope to view plant cells in focus Use the magnification equation to calculate the magnification, image or actual size | | | | Change the units if necessary | | 16. | Viewing animal cells under the microscope and calculating magnification | Find and view animal cells using a microscope Use the equation M=I/A to calculate any value given the other two Practice using scale to calculate magnification | | 17. | Cell cycle and mitosis | Identify DNA, genes, chromosomes on a diagram Describe the main stages of the cell cycle Use information provided to calculate time spent in different phases of the cell cycle | | 18. | Stem | cells | and | their | uses | |-----|------|-------|-----|-------|------| | | | | | | | - Name sources of stem cells and their uses - Describe some potential uses of stem cell technology - Evaluate different stem cell sources ### **19.** Osmosis required practical (Part 2) - Measure change in mass accurately and calculate percentage change - Display and interpret results appropriately - Describe and explain the patterns in the results ## Unit 2 Atomic structure and periodic table (HT) | Lesson
number | Lesson question | Pupils will learn | |------------------|--|--| | 1. | Mixtures, filtration and crystallisation | Define, identify and describe mixtures | | | | Explain the steps in the separation of mixtures of
soluble and insoluble substances | | | | Explain how mixtures of soluble and insoluble substances are represented and recognised | | 2. | Separation by distillation | Describe how to separate a mixture of two or more
liquids, identifying key equipment | | | | Explain the processes and equipment involved | | | | Apply particle theory to distillation | | 3. | Separation by chromatography | Describe the process of chromatography | | | | Carry out the chromatography of chlorophyll, explaining
key steps | | | | Interpret chromatograms | | | | | | 4. | Atomic structure | Describe atoms using the nuclear model | |-----------|---|--| | | | State the charges and mass of the three subatomic particles | | | | Use the periodic table to calculate the number of
protons, neutrons and electrons for any given element | | 5. | Development of the atomic model | Describe the development of the atomic model | | | | Compare the nuclear model with the plum pudding model | | | | Explain how new evidence from the scattering
experiment led to a change in the atomic model | | | Electron Configuration and the Periodic | | | 6. | Table | Describe what keeps electrons in their orbits | | 6. | _ | Describe what keeps electrons in their orbits Draw and write the electron configuration for any of the first 20 elements | | 6. | _ | Draw and write the electron configuration for any of the | | 7. | _ | Draw and write the electron configuration for any of the first 20 elements Describe the link between outer shell electron number, | | | Table | Draw and write the electron configuration for any of the first 20 elements Describe the link between outer shell electron number, number of shells and location in the periodic table | | 8. | Group 1 | Describe physical and chemical properties of the group
1 elements | | |-----|---|--|--| | | | Write equations to represent their reaction with water | | | | | Describe and explain trends in the properties and
reactivity of group 1 elements | | | 9. | Review (Part 2) | Revision of separation techniques and the command
words 'describe' and 'explain' in exam questions | | | 10. | Group 7 | Describe trends in physical properties of group 7 elements | | | | | Explain the trend in physical properties of group 7 elements | | | 11. | Displacement reactions: Ionic equations | Write ionic equations for the displacement reactions | | | 12. | Review (Part 1) | Revision of atomic structure and the maths skills
covered in the unit | | | 13. | Group 7 Displacement | Describe trends in reactivity going down group 7 | | |-----|---------------------------------------|--|--| | | | Describe the results of a series of reactions of group 7
elements and their compounds | | | | | Write word and symbol equations to represent some
reactions involving group 7 elements | | | 14. | Why elements react | Explain the difference between metals and non-metals in terms of reactions and electrons | | | | | • Explain why group 0 do not react in terms of electrons | | | | | Describe trends in physical properties of group 0 | | | 15. | Atoms, elements and compounds | Define elements and compounds and identify them from diagrams | | | | | Name compounds from word equations and formulae | | | | | Identify reactants and products in equations | | | 16. | Chemical formulae and conservation of | Interpret chemical formulae | | | | mass | Apply conservation of mass to equations | | | 17. | Comparing the reactivities of Group 1 and 7 elements | Use electron configuration to explain the trends in reactivity in group 1 and 7 Compare the trends in reactivity in group 1 and 7 | |-----|--|---| | 18. | Isotopes | Define an isotope | | | | Compare isotopes based on information given | | | | Calculate RAM of isotopes given their abundance and
give answers to a
specified number of significant figures
or decimal places | | 19. | Isotopes case study lesson | Describe the work of Marie Curie and Frederick Soddy
and explain how their work contributed to our
understanding of isotopes and the atomic model | ## **Unit 3 Particle Model of Matter (HT)** | Lesson
number | Lesson question | Pupils will learn | |------------------|--------------------------------|--| | 1. | Density of solids | Use an equation to calculate the density, mass or volume of an object Unit conversion (mass and volume) | | 2. | Density of liquids | Describe how to measure the density of liquids Make and record accurate measurements Suggest possible sources of error and how to correct them | | 3. | Heating and cooling substances | Describe heating and changes of state in terms of kinetic and potential energy stores Use the specific heat capacity equation to calculate any value given the others | | 4. | Latent heat | Describe changes to particle arrangement and
movement during a change of state | |------------|----------------------------|--| | | | Describe latent heat of vaporisation and fusion and
recognize them on a graph | | | | Use an equation to calculate energy, mass or latent heat
values | | 5. | Gas pressure | Use the particle model to explain gas pressure | | | | Plot data to show the effect of temperature on gas
pressure and describe the pattern shown | | | | Explain why changing the temperature of a gas affects
the pressure | | 6. | Case study: Joseph Black | Study the life and work of Joseph Black | | 7 . | Density required practical | Describe how to measure the density of regular and irregular solids | | | | Make and record accurate measurements | | 8. | Review (Part 1) | Recall definitions of key terms and use them correctly | | | | Apply knowledge of key topics to exam questions | | | | Correct key misconceptions on this topic | | 9. | Particle models | Describe the arrangement of particles in solids, liquids and gases, and represent them with accurate drawings Use the particle model to explain differences in properties of solids, liquids and gases Evaluate the particle models | |-----|--------------------------------|---| | 10. | Internal energy | Define internal energy Describe the two results of changing the internal energy of a system and recognize them on heating/cooling graphs Plot secondary data for heating a substance Describe heating and changes of state in terms of kinetic and potential energy stores | | 11. | Multi-Step energy calculations | Use an equation to calculate energy, mass or latent heat values Complete multi-step energy calculations | # **Unit 4 Organisation (HT)** ## 23 Lessons | Lesson
number | Lesson question | Pupils will learn | |------------------|-----------------------|---| | 1. | Heart disease | Describe some of the causes of heart disease | | | | Explain how coronary heart disease can lead to a heart attack | | | | Evaluate treatments for heart disease | | 2. | Food tests | Describe how to test for starch, sugars, proteins and fats | | | | Describe the positive and negative results of these tests | | | | Describe the safety precautions needed for food testing | | 3. | Investigating enzymes | Describe ways to measure the rate of enzyme action | | | | Identify variables to change measure and control to test
the effect of temperature on enzyme action | | | | Describe and explain the effect of temperature on the rate of enzyme action | | | | | | 4. | The heart | Label the major structures in the heart | |----|-------------------|--| | | | Describe the path blood takes through the heart and
around the body | | | | Calculate blood flow using appropriate equations | | | | Describe how heart rate is controlled | | • | Heart rate | Review the structure of the heart | | | | Describe the function of pacemaker cells | | | | Describe the role of artificial pacemakers | | 6. | Digestive enzymes | Describe the structure and function of the digestive system | | | | Describe the action of enzymes in digestion using the
'lock and key' model | | | | Name the 3 main digestive enzymes, where they are
produced, and the substrate and products of their
action | | 7. | Plant roots | Describe the structure of roots | | | | Explain how roots are adapted for absorption of water
and mineral ions | | 8. | Maths skills | Describe the terms cardiac output, stroke volume and
heart rate | |-----|-------------------------|--| | | | Calculate cardiac output, stroke volume and heart rate | | | | Use VESRAU to practice substitution and rearrangement
(values, equation, substitute, rearrange, answer, units) | | 9. | Digestion | Describe the organs of the digestive system and their function | | | | Describe the purpose and action of acid and bile in the digestive system | | 10. | The lungs | Label the major structures in the lungs | | | | Describe gaseous exchange | | | | Describe and explain how the lungs are adapted for
efficient gaseous exchange. | | 11. | pH and enzymes (Part 1) | Identify variables to change, measure and control to test
a hypothesis | | | | Collect and record data accurately | | | | Process and display results appropriately | | | | Describe and explain the effect of pH on enzyme activity | | Review (Part 2) | Review and consolidate knowledge of non-
communicable diseases and plant tissues from the
organisation unit | |-------------------------|---| | Exam technique | Identifying the skills needed to answer describe, explain and evaluate questions | | | Practice answering describe, explain and evaluate questions | | Blood and blood vessels | Describe the components of the blood and their function | | | Describe the structure and function of arteries and veins | | | Explain how blood components and blood vessels are
adapted for their function | | Maud Leonora Menten | Introduction to the work of Maud Menten and her work
on the Michaelis-Menten equation | | Review (Part 1) | Review and consolidate knowledge of the digestive
system, lungs and heart from the organisation unit | | | Exam technique Blood and blood vessels Maud Leonora Menten | | 17. | Transport in plants | Describe the movement of water around the plant by transpiration | |-----|-----------------------------|---| | | | Describe the movement of dissolved sugars around the plant by translocation | | | | Explain the role of xylem, phloem and stomata in transport in plants | | 18. | Investigating transpiration | Describe factors that can affect the rate at which water
moves | | | | Explain how rate of transpiration can be measured | | | | Explain how changes in temperature, humidity, air
movement and light intensity affect rates of water
movement | | 19. | Absorption | Describe adaptations of digestive system for absorption | | | | Explain how these adaptations aid absorption | | | | Describe uses for the absorbed food particles | | 20. | pH and enzymes (Part 2) | Describe and explain the effect of pH on amylase activity | | | | Suggest improvements to a method | | | | Apply knowledge and understanding to secondary investigations | | | | irivestigations | | 21. | Non-communicable disease | Describe some risk factors for diseases | |-----|--------------------------|---| | | | Explain the impacts of lifestyle choices and disease at
local, national and global levels | | | | Analyse and
interpret secondary data on disease incidence rates | | 22. | Cancer | Describe how cancer forms in the body | | | | Describe the risk factors associated with cancer development | | | | Explain the difference between 'benign' and 'malignant'
tumours | | | | Explain how malignant cancer can spread | | 23. | Plant tissue | In this lesson we will look at how the tissues of the leaf are adapted to photosynthesis. | ## Unit 5 Bonding, structure and the properties of Matter (HT) | Lesson
number | Lesson question | Pupils will learn | |------------------|----------------------------|---| | 1. | Further ionic bonding | Describe the formation of an ionic bond | | | | Represent ionic bonding using diagrams | | | | Write formula for ionic compounds | | 2. | Ionic bonding introduction | Describe the formation of ions | | | | • Link the charge of ions to the place in the periodic table | | 3. | Covalent bonding | Define a covalent bond | | | | Draw and describe covalent bonds using structural, ball
and stick and displayed formula | | | | Describe the limitations of the different models | | 4. | Simple covalent molecules | Explain why some covalent substances form molecules and others form giant structures | | | | Describe the properties of simple covalent molecule | | | | Explain their properties in terms of bonding | | 5. | The giant covalent structures | Explain why some covalent substances form molecules and others form giant structures Describe the properties of diamond and graphite Explain the properties using knowledge of the bonding and structure Relate properties of these carbon allotropes to their uses | |----|-------------------------------------|--| | 6. | Giant covalent structures: Graphene | Describe the structure of graphene and fullerenes Describe and explain their properties Describe the work of the scientists who discovered graphene | | 7. | Solids, liquids and gases | Predict the state of substances at different temperatures, and the type of bonding present given melting and boiling point data Describe what happens in terms of particles and forces during a change of state (Higher tier only) Explain the limitations of the particle model in relation to changes of state | | 8. | Review (Part 2) | Review ionic, covalent and metallic bonding | |-----|-------------------------------|--| | | | Relate properties to their bonding | | | | Relate properties to their uses | | 9. | Metallic bonding | Describe the structure and bonding of metals | | | | Describe and explain the properties of metals | | | | • Explain why alloys are harder than pure metals | | 10. | Review (Part 1) | Review the content covered on ionic and covalent bonding | | | | Compare the properties of ionic and covalent substances | | 11. | Properties of ionic compounds | Describe some of the properties of ionic compounds | | | | Explain some of the properties of ionic compounds
using knowledge of the structure | | 12. | Polymers | Describe the structure of polymers | | | | Explain the properties of polymers | | | | Draw the formation of polymers given the monomer | | | | | # Unit 6 Energy (HT) ### 14 Lessons | Lesson
number | Lesson question | Pupils will learn | |------------------|---|---| | 1. | Efficiency and reducing unwanted energy transfers | Calculate efficiency from data or a Sankey diagram | | | | Describe ways of reducing unwanted energy transfers | | | | Explain a method for reducing unwanted energy transfers | | 2. | Specific heat capacity | Explain what is meant by specific heat capacity | | | | Use the specific heat capacity equation to calculate
unknown values | | 3. | Renewable energy resources | Describe uses of renewable energy resources | | | | Describe advantages and disadvantages of renewable energy resources | | | | Evaluate the use of energy resources | | | | Compare the use of different energy resources | | | | | | 4. | The gravitational potential store | Use an equation to calculate GPE, mass or height | |----|--|--| | | | Use values for GPE to calculate the theoretical velocity of
an object | | | | Explain why the maximum theoretical velocity is never actually reached | | 5. | Multi-Step calculations for the energy topic | Choose correct equations to use in calculations Use multiple equations to solve single problems | | 6. | Energy transfers | Name the 8 energy stores | | | | Describe the transfer of energy from one store to
another, identifying pathways | | | | Describe how energy is dissipated and calculate efficiency | | 7. | Case study: Esther Takeuchi | Understand the key contributions of Esther Takeuchi to
our understanding of energy | | 8. | Specific heat capacity required practical | Explain the method steps used to find the specific hear
capacity (SHC) of a substance | | |-----|---|--|--| | | | Plot a graph of results to determine specific heat capacity | | | | | Calculate the SHC of the blocks investigated | | | | | Write a method for an alternative SHC investigation | | | 9. | Energy review | Correct misconceptions | | | | | Recall definitions of key terms and use them correctly | | | | | Apply understanding of key topics to exam style questions | | | 10. | Non-Renewable energy resources | State the names of non-renewable energy resources | | | | | Interpret data to compare energy usage | | | | | Consider the impact on the environment of non-
renewables | | | 11. | The kinetic energy store | Calculate the energy stored in a moving object | | | | | Rearrange the equation to calculate velocity or mass | | | | | Change units where necessary and express answers to
given numbers of significant figures | | | 12. | The elastic potential store | Define an elastic object Calculate the energy stored in a stretched or compressed object Describe the energy transfers in a bouncing object | |-----|-----------------------------|--| | 13. | Conservation of energy | Define the term 'system' Explain the law of conservation of energy. Apply conservation of energy to systems involving GPE and KE | | 14. | Power | Describe, using examples, what is meant by power Calculate power using energy transferred or work done Compare the power of different appliances or machines | ## **Unit 7** Infection and response (HT) | Lesson
number | Lesson question | Pupils will learn | |------------------|-----------------------------|--| | 1. | Viral and bacterial disease | Describe the symptoms, spread and prevention of viral
measles, HIV and TMV | | | | Describe the symptoms, spread and prevention of
bacterial diseases salmonella and gonorrhoea | | | | Explain why antibiotics can be used to treat bacterial
infections but not viral ones. | | | | Process secondary data related to infection rates | | 2. | Testing drugs (Part 2) | Recap on stages of drug development | | | | Explain the importance of carrying out a double-blind trial | | 3. | Immunity | Describe how white blood cells respond to destroy pathogens | | | | Explain the difference between the primary and secondary immune response | | | | Explain what is meant by immunity | | 4. | Review (Part 1) | Review and consolidate knowledge of pathogens from
the infection and response unit | |----|-----------------|--| | 5. | Review (Part 2) | Review and consolidate knowledge of drug development
and treating infection from the infection and response
unit | | 6. | Antibiotics | Explain the difference between antibiotics and over the counter medications | | | |
Collect data on the action of different antibiotics and
process it appropriately | | | | Use data collected to draw conclusions | | 7. | Maths skills | Calculate a mean, the area of clear zones and percentage changes | | | | Draw a conclusion from data | | 8. | Exam Skills | Identify command verbs and respond appropriately | | | | Apply knowledge to exam-style questions | | | | | | 9. | Infectious disease | Name causes of some infectious diseases and describe
how they make us ill | | |-----|----------------------------|---|--| | | | Describe how pathogens can be spread, and how this spread can be reduced | | | | | Describe the main defence mechanisms of the body | | | 10. | Testing drugs (Part 1) | Identify the source of digitalis, penicillin and aspirin | | | | | Describe the stages in developing new drugs to treat disease | | | | | Describe the use of placebos and explain why they are
needed | | | 11. | Fungal and protist disease | Describe the symptoms, spread and prevention of rose black spot | | | | | Describe the spread, symptoms and prevention of malaria | | | | | • Explain what is meant by the term 'vector' | | | 12. | Vaccines | Describe what is in a vaccine | | | | | Explain how vaccines prevent infection | | | | | Explain the advantages of large scale vaccination | | 13. # **Unit 8 Quantitative Chemistry (HT)** | Lesson
number | Lesson question | Pupils will learn | |------------------|---------------------------------|---| | 1. | Relative formula mass (FT only) | Use the periodic table and formulae to determine the
relative formula mass of compounds | | | | Work out percentage of given elements in a compound | | | | Work out the mass of a particular element in a given
mass of a compound | | 2. | Review (HT only) | Review of higher tier calculations content | | 3. | Reacting masses (HT only) | Predict the mass of product from a specified starting mass | | | | Use a balanced equation to work out the quantity of
reacting elements needed to produce a specified
quantity of product | | 4. | Relative formula mass (HT only) | Use the periodic table and formulae to determine the relative formula mass of compounds Work out percentage of given elements in a compound Work out the mass of a particular element in a given mass of a compound | |----|---|---| | 5. | Balancing equations using moles (HT only) | Write chemical formulae using knowledge of ion charges Balance equations using the same number of atoms rule Balance equations using moles | | 6. | Limiting reactants | Define a limiting reactant Describe the effect of a limiting reactant on the amount of products it is possible to produce Calculate the limiting reactant from a balanced symbol equation | | 7. | Concentration | Define the term 'concentration' Calculate concentration from mass and volume Work out the mass of a substance in a given volume of a solution of a known concentration | # 8. Moles and Avogadro's constant (HT only) - Use Avogadro's constant to calculate number of atoms/molecules in a given mass - Calculate the mass of a given number of atoms using the Avogadro constant # **Unit 9 Electricity (HT)** ## 20 Lessons | Lesson
number | Lesson question | Pupils will learn | |------------------|-------------------------------|---| | 1. | Diodes | Recognise and draw the symbol for a diode | | | | Process secondary data and plot a graph of the data | | 2. | Review of electrical circuits | Correct misconceptions for electrical circuits | | | | Recall key definitions and equations | | | | Apply understanding of key topics to exam style questions | | 3. | Electrical power (Part 1) | Recall and apply the equation linking current, potential difference and power | | | | Change units and the subject of equations where necessary | | | | Recall and apply the equation to calculate power,
current or resistance | | | | Change units and the subject of equations where
necessary | | Multi-Step calculations | Be able to solve problems using multi-step or multiple equations | |-----------------------------|---| | Thermistors | Draw a circuit diagram to illustrate how to test the resistance of a thermistor | | | Process secondary data appropriately and use it to inform a conclusion | | | Explain the use of thermistors as a thermostat | | Domestic electricity review | Correct any misconceptions for domestic electricity | | | Recall key information and definitions | | | Apply understanding to exam style questions | | Drawing electrical circuits | Draw circuits, using correct common circuit symbols | | Electrical power (Part 2) | Recall and apply the equation linking energy, power and
time | | | Recall and apply the equation linking charge, energy and
potential difference | | | Thermistors Domestic electricity review Drawing electrical circuits | | 9. | Light dependent resistors | Identify the variables to change, measure and control to
test a hypothesis | |-----|---------------------------|--| | | | Collect and display results appropriately | | | | Explain how resistance changes with light levels in a
light-dependent resistor (LDR) | | | | Explain how LDRs can be used to switch lights on when it gets dark | | 10. | Charge and current | Describe electrical current | | | | Use the equation Q=It to calculate any value given the
other two, changing units where necessary | | 11. | Parallel circuits | Describe and apply the rules for potential difference
(pd) and current in a parallel circuit | | | | Describe the effect of adding resistors in parallel | | | | Use Ohm's law to find pd, resistance or current in
parallel circuits | | | | | | 12. | Resistance of a wire | Identify the variables to change, measure and control to
test a hypothesis | |-----|------------------------------|--| | | | Collect and record measurements of current and
potential difference for different lengths of wire | | | | Use the readings to calculate resistance in the wire | | | | Plot a graph of the results | | 13. | Series and parallel circuits | Compare series and parallel circuits | | | | Use Ohm's Law to find potential difference (pd), current
and resistance in circuits | | 14. | Properties of resistors | Make and record measurements to find the pattern of resistance in a fixed resistor | | | | Plot a graph of the data obtained | | | | Describe and explain the relationship between current,
potential difference and resistance in a fixed resistor | | 15. | Series circuits | Predict current and potential difference (pd) in series circuits | | | | Describe the effect of adding resistors in series circuits | | | | Use Ohm's Law to calculate current, resistance or pd | | 16. | Electrical resistance | Describe what happens to current when potential difference and resistance are varied Use an equation linking potential difference, current and resistance to calculate any value given the other two | |-----|-----------------------|---| | 17. | Filament lamps | Make and record measurements to find the pattern of
resistance in a filament lamp | | | | Plot a graph of the data obtained | | | | Calculate resistance for the values collected | | | | Describe and explain the relationship between current,
potential difference and resistance in a filament lamp | | 18. | Potential difference | Describe what is meant by potential difference and resistance in circuits | | | | Recall and apply the equation linking charge, energy and
potential difference | | 19. | The national | grid | |-----|--------------|------| |-----|--------------|------| - Describe how electricity is transmitted in
the national grid, naming the components - Explain the use of transformers in the national grid - Evaluate the use of underground or overhead cables - (Higher tier) use a given equation to calculate current or pd given appropriate information #### 20. Domestic electricity - Describe the features of UK mains supply and three core cable - Explain the use of live, neutral and earth wires - Explain the difference between direct and alternating potential difference # **Unit 10 Bioenergetics (HT)** | Lesson
number | Lesson question | Pupils will learn | |------------------|--|---| | 1. | End of topic review | Review and consolidate knowledge of respiration and
metabolism from the bioenergetics unit | | 2. | Maths Skills | Practice calculating means, including identifying anomalies | | 3. | Photosynthesis | Name the reactants and products needed for
photosynthesis and represent it using a word and
symbol equation | | | | Describe uses for the glucose made during
photosynthesis | | | | Carry out a test for starch and explain the results | | 4. | Manipulating factors of photosynthesis
HT | Interpret graphs of photosynthesis rate with multiple
factors and decide which is limiting | | | | Describe some ways of manipulating conditions for
plant growth | | | | Evaluate these methods | | | intensity and rate of photosynthesis Describe and explain the effect of carbon dioxide concentration and temperature on the rate of photosynthesis | |---------------------------------------|---| | | Identify limiting factors from graphs | | Consequences of anaerobic respiration | Describe how an oxygen debt occurs | | | Explain the problems with an oxygen debt and how the
body compensates in response | | Metabolism | Define the term metabolism | | | Give examples of reactions in metabolism | | | Describe the formation of lipids, amino acids and urea | | Exam Skills | Apply knowledge of bioenergetics to exam style questions | | Synoptic links | Explain the importance of the digestive, respiratory and circulatory systems in effective respiration | | | Metabolism Exam Skills | | Review photosynthesis | Review and consolidate knowledge of photosynthesis
from the bioenergitics unit so far. | |-----------------------------------|---| | Respiration | Define respiration and explain its importance in the body | | | Describe some changes that occur in the body during exercise | | | Explain why these changes are necessary | | Photosynthesis required practical | Collect the data in a suitable table | | resuits | Describe and explain the relationship between light
intensity and rate of photosynthesis | | | Describe and explain the effect of carbon dioxide
concentration and temperature on the rate of
photosynthesis | | | (Higher tier & triple biology only) Calculate the inverse
square law | | Scientist case study-Ynes Mexia | (Higher tier & triple biology only) Calculate the inverse
square law | | | Respiration Photosynthesis required practical results | **Review photosynthesis** 10. ### 14. Anaerobic respiration - Describe the consequences of anaerobic respiration - Explain the results of a simple experiment into anaerobic respiration - Compare aerobic respiration with anaerobic respiration ### 15. Photosynthesis required practical - Identify variables to change, measure and control to test a hypothesis - Explain the steps in a given method to test a hypothesis - Collect and record data to test a hypothesis | Lesson
number | Lesson question | Pupils will learn | |------------------|---|---| | 1. | Displacement reactions of metals | Explain how the reactivity of a metal is related to forming ions | | | | Record observations on whether or not displacement reactions occur | | | | Write equations for displacement reactions | | 2. | Extraction of aluminium | Explain the use of electrolysis to extract metals | | | | Describe the extraction of Aluminium from its ore,
including the use of a mixture and the need to
continually replace the anode | | | | Explain why electrolysis is so expensive and describe
measures that can be taken to reduce this | | 3. | Reactivity and acid base reactions review | Review of the content on reactivity, acid base reactions
and making salt | | | | Define endothermic and exothermic reactions and give examples of each type | | | | | | 4. | Humphry Davy and Laban Roomes applications of electrolysis | Describe the work of Humphrey Davey and Laban
Roomes with electrolysis | |----|--|---| | | | Describe and explain products at the electrodes | | 5. | Acid base reactions | Write word equations to represent the reactions of
metal oxides and acids | | | | Explain steps in a given method to produce a pure, dry
sample of a soluble salt | | | | Use ion charges to write formulae for salts | | 6. | Acids, alkalis and the pH scale | Describe the use of universal indicator to classify
substances and measure approximate pH values | | | | Evaluate the use of universal indicator and suggest why
a pH probe may be more accurate | | | | Write equations to represent the reaction of acids and
alkalis, including the ionic equation | | | | Process secondary data, calculating means and uncertainty | | 7. | Chemical change higher tier review | Revision of higher tier content in the unit, including
redox and half equations and strong and weak acids | | | | | | 8. | Strong and weak acids | Describe how to use an indicator to classify substances
as strong or weak acids | | |-----------------------|--|--|--| | | | Explain what strong, weak, concentrated and dilute acids are | | | | | Make order of magnitude calculations to describe changes in pH | | | 9. | Electrolysis review | Review of learning on electrolysis, metal extraction and electrolysis of solutions | | | 10. Investigating the | Investigating the reactivity of metals | Identify variables to change, measure and control to test
the reactivity of metals | | | | | Write equations for the reactions of acids and metals,
naming salts | | | | Use observations to order m | Use observations to order metals in terms of reactivity | | | 11. | Electrolysis of solutions | Predict the products of the electrolysis of given solutions | | | | | Electrolyse solutions of ionic compounds and identify
the products | | | | | Explain how the products are obtained | | | 12. | Making salts | Suggest corrections to a given method to make a salt | |-----|---------------------------------------|--| | | | Write a method to prepare a salt using a metal
carbonate or metal oxide | | | | Write equations for the reactions | | 13. | Electrolysis of molten compounds | Define the terms 'electrolysis' and 'electrolytes' | | | | Describe the movement of ions during electrolysis | | | | Explain what happens at the electrodes during electrolysis | | 14. | Observations from acid base reactions | Write equations to represent the reactions of metal carbonates and acids | | | | Describe evidence for a chemical reaction | | | | Describe the test for carbon dioxide and its positive result | | 15. | Redox | Describe oxidation and reduction in terms of oxygen | | | | Identify where oxidation and reduction have happened given an equation | | | | Explain how carbon can be used to extract metals from
their ores using redox reactions | | 16. | Developing an electrolysis hypothesis | Develop a hypothesis to test | |-----|---------------------------------------|--| | | | Electrolyse given solutions, collecting and identifying the products | | | | Apply knowledge to other related hypotheses | | 17. | Acid base ionic equations | Write balanced symbol equations for acid base reaction | | | | Write ionic equations for acid base reactions | | 18. | Redox (Higher tier) | Define redox in terms of electrons | |
| | Identify species that are oxidised or reduced in reactions | | | | Write half equations to represent the reactions | | 19. | Electrolysis half equations | Write ionic equations for the reactions at the electrodes | | | | Identify chemical species that are oxidised or reduced | | 20. | Writing a method | Describe the key features of method writing | | | | Write a method to test a hypothesis and write a procedural method | | | | | # **Unit 12 Atomic Structure (HT)** | Lesson
number | Lesson question | Pupils will learn | |------------------|-----------------------------|--| | 1. | Activity and half-life (HT) | Describe what is meant by the radioactive half life of a sample | | | | Plot a graph representing the number of decays in a sample | | | | Determine half lives from information given | | 2. | Isotopes and ionisation | Explain how EM radiation can cause changes in electron arrangement or ionisation | | | | Compare isotopes in terms of their subatomic particles | | 3. | Decay equations | Write nuclear equations to represent decay | | 4. | History of atomic models | Compare the nuclear model of the atoms with the plum pudding model | | | | Describe how evidence led to changes in the atomic model | | | | Explain why Rutherford's atomic model was readily accepted | | | | | | 5. | Exploring inside an atom | Describe the current atomic model | |----|---|---| | 6. | Atomic structure review (Part 1) | Identify key misconceptionsApply understanding to exam questions | | 7. | Radioactivity | Describe the effect of alpha, beta and gamma radiation on the nucleus Describe properties of alpha, beta and gamma radiation | | 8. | Uses and hazards of radiation (Combined science only) | Describe some uses and dangers of radioactive sources Explain the relative dangers in terms of properties and half lives Evaluate the use of radioactive sources for given situations Describe and identify examples of radioactive contamination and irradiation Compare the hazards associated with contamination and irradiation | # Unit 13 Ecology (HT) | Lesson
number | Lesson question | Pupils will learn | |------------------|-----------------------------|--| | 1. | Communities | Identify examples of interdependence within an ecosystem | | | | Predict the impact of changes to one species on the rest
of the community | | | | Extract and interpret information from charts, tables
and graphs relating to interaction of organisms in a
community | | 2. | Case Study: Dr Beth Penrose | Introduction to the work of Dr Beth Penrose | | 3. | Biotic and Abiotic factors | Identify biotic and abiotic factors within an ecosystem | | | | Explain how a change in a biotic or abiotic factor can
affect a community | | | | Extract and interpret information from secondary data | | 4. | Adaptations | Give examples of behavioural, structural or functional adaptations | |----|--------------------------------------|---| | | | Suggest factors that organisms are competing for given information | | | | Identify and explain how organisms are adapted to live
in their natural environment | | 5. | Sampling required practical (Part 1) | Use a quadrat to collect valid data to estimate a population size | | | | Describe how to make the data as accurate as possible | | | | Calculate population estimates | | 6. | Global warming | Describe and explain ways in which humans affect ecosystems | | | | Evaluate the data linking greenhouse gases to global warming | | | | Describe some of the consequences of global warming | | 7. | Review (Part 1) | Review of communities, biotic and abiotic factors,
adaptation, and sampling | | | | | | 8. | Sampling required practical (Part 2) | Calculate percentage cover of organisms | |-----|--------------------------------------|---| | | | • Describe how to use a transect line to test a hypothesis | | | | Process and interpret secondary data, identifying variables | | 9. | Review (Part 2) | Review of cycles, global warming, and biodiversity | | 0. | Cycles | Describe the water cycle and explain its importance to living things | | | | Describe the processes by which carbon is cycled
through biotic and abiotic parts of ecosystems | | 1. | Biodiversity | Describe some impacts of humans on biodiversity | | | | Explain the importance of biodiversity | | | | Describe ways that humans have tried to restore or maintain biodiversity | | 12. | Maths skills | Calculate surface area:volume ratio | | | | Calculate means and uncertainties | # **Unit 14 Energy changes (HT)** | Lesson
number | Lesson question | Pupils will learn | |------------------|---|--| | 1. | Review combined | Review of the foundation and higher tier content | | 2. | Required Practical: Temperature change (Part 2) | Draw conclusions from data provided Explain the changes in temperature during the experiment Evaluate the equipment and method used, explaining suggestions for improvement | | 3. | Exothermic and endothermic reactions | Define endothermic and exothermic reactions and give examples of each type Describe some everyday uses of exothermic and endothermic reactions Evaluate applications of exothermic and endothermic reactions | | 4. | Case study | Look at the scientists and engineers using endothermic
and exothermic reactions in their work | | 5. | Calculating bond energies | Calculate bond energy values and use them to predict
whether a reaction will be exothermic or endothermic | |----|---|---| | | | Relate bond energies to the correct part of energy level
diagrams | | | | Explain why bond energy calculations have a margin of error | | 6. | Required Practical: Temperature change (Part 1) | Investigate one of the variables affecting the
temperature change, identifying variables to change,
measure and control | | | | Process and display results appropriately | | 7. | Energy level diagrams | Draw and interpret energy level diagrams to represent
endothermic and exothermic reactions | | | | Define activation energy and label it on a diagram | | | | Explain why reactions are endothermic or exothermic overall | | 8. | Writing a method to test a hypothesis | Identify variables to change, measure and control | | | | Write a method to test a given hypothesis | | | | Design a table to collect and record results | | Lesson
number | Lesson question | Pupils will learn | |------------------|-------------------------------------|--| | 1. | Magnetic fields | Describe and draw the direction of the magnetic field around a bar magnet | | | | Describe how to plot the magnetic field pattern of a
magnet using a compass | | | | Explain how the behaviour of a magnetic compass is
related to evidence that the core of the Earth must be
magnetic | | 2. | The motor effect and left hand rule | Describe the motor effect and the factors that affect the
size of the force on the conductor | | | | Use Fleming's left hand rule to predict the direction of
movement of a wire in a field | | | | Use the equation linking force, magnetic flux density,
current and length to calculate any value, changing units
where appropriate | | 3. | Magnetism Revision (Part 1) | Identify key misconceptions from the magnetism unit Apply understanding of magnetism to exam questions | | | | - Apply understanding of magnetism to exam questions | | 4. | DC Motors | Explain how a DC motor works, using Fleming's left hand rule to predict the
direction of rotation Explain the role of a commutator | |----|------------------|---| | 5. | F = B x I x I | Use the equation linking force, magnetic flux density, current and length to calculate any value, changing units where appropriate Combine equations to calculate missing values | | 6. | Magnetism | Describe what happens when poles of a magnet are brought together Describe how to test to see if a material is magnetic or a magnet Interpret secondary data on an experiment to test the variation in magnetic field Describe how the strength of a magnetic field varies | | 7. | Electromagnetism | Describe and draw the magnetic field around a wire carrying a current Describe the magnetic field in and around a solenoid Explain how the strength of the magnetic field can be varied | ### **Unit 16 Homeostasis and response (HT)** | Lesson
number | Lesson question | Pupils will learn | |------------------|--|--| | 1. | Homeostasis review (Higher) | Review of homeostasis | | 2. | Hormonal responses | Describe how the endocrine system brings about responses in the body | | | | Label the main endocrine glands of the body | | | | Compare hormonal responses with nervous responses | | 3. | Artificial control of fertility (Higher) | Describe how fertility drugs and IVF work | | | | Interpret secondary data on fertility treatments and IVF | | | | Evaluate fertility treatments from the perspective of
doctors and patients | | | | | | 4. | Contraception | Describe how different methods of contraception
prevent pregnancy | |----|----------------------------|--| | | | Interpret data on the effectiveness of contraception methods | | | | Evaluate different hormonal and non-hormonal methods | | 5. | Scientist case study | Outline the work of Kiran Mazumdar-Shaw | | 6. | Negative feedback (Higher) | Describe the role of adrenaline and thyroxine in the body | | | | Explain how negative feedback allows homeostasis to occur | | 7. | Reflex arcs | Describe what is meant by a reflex and give some examples | | | | Explain the difference between a reflex and a conscious action | | | | Label a diagram of a reflex arc, using key terms correctly | | | | Describe how nerve cells communicate with each other
in a simple reflex action | | 8. | The nervous system | Describe the role of receptors, neurons and effectors in responding to a stimulus Describe an appropriate response pathway to any given stimulus | |-----|--|---| | 9. | Required practical: Reaction time (Part 2) | Decide on the reproducibility of class data Evaluate the method Describe and explain patterns in secondary data | | 10. | Controlling blood sugar levels (Higher) | Describe how blood glucose levels are monitored Explain the response to an increase in blood glucose Explain how insulin controls blood glucose levels in the body Explain the role of glucagon in blood sugar level maintenance and how negative feedback is used | | 11. | Required practical: Reaction time (Part 1) | Identify the hypothesis and variables from a given method Collect and record data accurately Process and display data collected (including uncertainties if appropriate) | | 12. | Hormones in reproduction (Higher) | Describe the roles of male and female reproductive hormones | |-----|---|--| | | | Describe the menstrual cycle and the hormones involved | | | | Explain the interactions of FSH, LH, oestrogen and
progesterone in the menstrual cycle | | | | Extract and use information from graphs showing hormone levels | | 13. | Diabetes | • Compare Type 1 and Type 2 diabetes | | | | Describe some treatments for both types of diabetes | | | | Interpret data from graphs on the effect of insulin on
blood glucose in people with diabetes | | 14. | The nervous system and Homeostasis review lesson (Higher) | Review of nervous system and homeostasis | ### Unit 17 The rate and extent of chemical change (HT) | Lesson
number | Lesson question | Pupils will learn | |------------------|---|---| | 1. | Le Chatelier's principle: Uses in industry | Explain the effect of changes in pressure on the equilibrium of gaseous reactions | | | | Describe the conditions for optimum yield for a given reaction | | | | Explain why optimum yield conditions are not always
the ones chosen | | 2. | Rate of reaction required practical (Part | Develop a hypothesis that can be tested | | | | Display data appropriately | | | | Describe and explain the effect of concentration on the rate of reaction | | 3. | The Rate and extent of chemical change: Review (Part 1) | Review of collision theory and rates of reaction | | 4. | Rate of reaction | Describe evidence for a chemical reaction | | | | Describe how to measure rates of reaction | | | | Calculate the rate of the reaction from data or graphs | | 5. | Rate of reaction using graphs and tangents | Draw tangents to a curveUse the tangent to calculate rate of reaction | |----|---|--| | 6. | Effect of changing surface area on rate of reaction | Identify variables to change, measure and control to test
a hypothesis | | | | Process and display data appropriately | | | | Use the data to describe and explain the effect of
changing surface area on the rate of reaction | | 7. | Rate of reaction required practical (Part 2) | Describe how to measure the rate of reaction using a
change in colour or turbidity | | | | Process and display data appropriately, explaining choice of graph | | | | Describe and explain the effect of concentration on the | rate of reaction • Check for reproducibility in data collected | 8. | Le Chatelier's principle: Effect of changing concentration and | State and apply Le Chatelier's principle to any reversible
reaction | |-----|--|---| | | temperature | Describe the effect on equilibrium of changes to
temperature and concentration | | | | Choose and explain the conditions needed to achieve a
high yield | | 9. | The Rate and extent of chemical change: Review (Part 2) | Review of higher tier content in the unit, including using
tangents to calculate rates and Le Chatelier's principle | | 10. | Collision theory | Define activation energy | | | | Describe factors that can affect the rate of reaction | | | | Explain how these factors affect rate using collision theory | | 11. | Catalysts | Describe what a catalyst is and how it affects the rate of a reaction | | | | Explain why more than one catalyst is often needed | | | | Describe the test for oxygen gas | | | | Draw a reaction profile for a reaction with and without a catalyst | | changing temperature on rate | Describe and explain the effect of pressure on gaseous reaction Apply knowledge to novel reactions Describe and explain the effect of temperature on rates of reaction, using particle theory Interpret secondary data on the effect of temperature on the rate of reaction | |-------------------------------------|--| | | Describe and explain the effect of temperature on rates of reaction, using particle theory Interpret secondary data on the effect of temperature | | | of reaction, using particle
theoryInterpret secondary data on the effect of temperature | | | | | | | | | Explain the observations using particle theory | | e reactions | Describe what is meant by a reversible reaction and how
to represent it | | | Explain how reversible exothermic and endothermic reactions are linked | | | Explain what is meant by 'dynamic equilibrium' | | | Describe the effect on equilibrium of changes to pressure | | ier's principle: Effect of pressure | | | | | # **16.** Planning an investigation to find rate of reaction - Write a method to test a hypothesis - Describe patterns in data - Explain patterns using collision theory # **Unit 18 Forces (HT)** | Lesson
number | Lesson question | Pupils will learn | |------------------|------------------------------|--| | 1. | Momentum | State what is meant by momentum | | | | Calculate the momentum of objects | | | | Apply the conservation of momentum to collisions and explosions | | 2. | Newton's Laws | Use Newton's second law to calculate force, mass or acceleration | | | | Estimate the speed, accelerations and forces involved in
large accelerations for everyday road transport | | | | Recognise and use the symbol that indicates an approximate value | | | | (Higher tier) Define and explain that what we mean by inertial mass | | 3. | Case Study: Sir Isaac Newton | Study the life and work of Sir Isaac Newton | | 4. | Acceleration Required Practical (Part 2) | Interpret graphs to make conclusions | |----|--|---| | | | Use the equation F=ma to calculate theoretical acceleration | | | | Explain differences between experiment data and theoretical values | | | | Calculate acceleration using speed and distance measurements | | 5. | Forces: an introduction | Describe the difference between scalar and vector quantities | | | | Describe forces as contact or non-contact and give examples | | | | Describe the interaction between forces between pairs of objects | | 6. | Speed | Explain what is meant by the term 'average speed' | | | | Recall and apply a formula to calculate average speed,
distance or time | | | | | | 7. | Resolving forces (HT) | Calculate resultant force of forces acting in a straight line | |-----------|-------------------------|---| | | | Describe the effect of resultant forces on objects | | | | Describe scalar and vector quantities and give examples | | | | Represent and interpret vector quantities using scale diagrams | | | | Draw and interpret vector diagrams representing multiple forces | | 8. | Combined science review | Identify key misconceptions from the forces unit that
are common to combined science and GCSE Physics
courses | | | | Apply key understanding from the forces unit to exam questions | | 9. | Forces and work | Describe energy transfers when work is done, including
the effect of work done against frictional forces | | | | Calculate work done, force or distance given appropriate information | | | | Convert units where needed | | | | | | 10. | Forces and elasticity (Part 1) | Identify variables to change, measure and control in a given hypothesis Construct a table for result, including units Explain the steps in the method to test a given hypothesis Collect and display data appropriately | |-----|--------------------------------|--| | 11. | Velocity: Time Graphs | Draw velocity-time graphs from measurements Interpret lines and slopes to determine acceleration (Higher tier) Determine distance travelled by an object (or displacement of an object) from a velocity-time graph | | 12. | Stopping distance | Identify and sort factors which could affect thinking or braking distance Calculate the stopping distance of a vehicle using an equation Write a conclusion with values quoted Rearrange the equation for stopping distance to calculate braking or thinking distance | | 13. | Acceleration Required Practical (Part 1) | Describe a method for investigating how force or mass affects acceleration | |-----|--|---| | | | Select appropriate apparatus for determining the acceleration of an object | | | | Describe how to manage the risks associated with the practical | | | | Correctly calculate means | | 14. | Forces and elasticity (Part 2) | Recall and use a formula to calculate extension, force or
spring constant | | | | Process secondary data | | | | Plot a graph of the data and use it to explain the limit of
proportionality | | | | Relate stretching and compression to work done and calculate this | | 15. | Weight, mass and gravity | Describe how to find and represent the centre of mass
of an object | | | | Describe the relationship between mass, weight and gravity | | | | Use the mathematical relationship to calculate any
value, given the other two | | | | | | 16. | Terminal velocity | Describe and recognise terminal velocity | |-----|-----------------------|---| | | | Explain why falling objects have different terminal velocities | | | | (Triple physics only) Draw and interpret velocity-time
graphs for objects reaching terminal velocity | | | | (Triple physics only) Interpret the changing motion in
terms of the forces acting | | 17. | Distance: Time graphs | Interpret distance time graphs and use them to calculate speed | | | | (Higher tier) Explain qualitatively that motion in a circle
involves constant speed but changing velocity | | 18. | Acceleration | Calculate resultant forces | | | | Describe the effect of resultant forces on stationary and
moving objects | | | | Calculate acceleration and use the correct units | | | | Use and manipulate the equation for uniform acceleration | ### Unit 19 Inheritance, variation and evolution (HT) | Lesson
number | Lesson question | Pupils will learn | |------------------|--|--| | 1. | Inherited disorders (Part 2) | Interpret family tree diagrams | | | | Use family tree to calculate ther probability of offspring inheriting diseases | | | | Evaluate the use of embryo screening for detecting inherited disorders | | 2. | Variation and natural selection (Part 1) | Describe reasons for extensive variation within species | | | | Describe the effects of mutations on variation | | 3. | Genetic engineering (Part 1) | Describe genetic engineering | | | | Give examples of genetically modified organisms | | | | Explain some potential benefits and risks of genetic
engineering in agriculture and medicine | | 4. | Variation and natural selection (Part 2) | Explain how variation can lead to evolution by natural selection | | 5. | Meiosis and fertilisation | Describe the main features of meiosis | |-----------|---------------------------------|---| | | | Compare mitosis with meiosis | | | | Explain the importance of meiosis in sexual reproduction | | 6. | Nancy Chang | Outline the work of Nancy Chang, who sequenced the HIV genome | | 7. | Evolution and extinction | Describe the theory of evolution by natural selection | | | | Interpret evolutionary tree diagrams | | | | Explain why some organisms are now extinct | | 8. | Sexual vs. Asexual reproduction | Describe sexual and asexual reproduction in animals and plants | | | | Explain why asexual reproduction leads to identical offspring | | | | Explain why sexual reproduction leads to variation | | | | | | 9. | Classification | Describe and apply the Linnaean system for
classification | |-----|---------------------------------------|--| | | | Explain why new
models of classification have been proposed | | | | Describe the 'three domain' classification system | | 10. | Inherited disorders (Part 1 - Higher) | Describe the symptoms of the genetic diseases cystic fibrosis & polydactyly | | | | Use genetic cross diagrams to calculate probability of
offspring inheriting these diseases | | 11. | End of topic review (Part 1) | Review of natural selection, selective breeding and genetic engineering | | 12. | Genetic Inheritance (Higher) | Construct and interpret genetic diagrams | | | | Calculate the probability of inheriting particular
characteristics given information about the parents | | | | Use genetic terms to describe parents & offspring characteristics | | 13. | Mid-Topic review | Review of meiosis, sexual and asexual reproduction,
genes and inheritance | | | | 80.100 0.100 1.100 1.100 | | 14. | Evidence for Evolution (Part 2) | Describe how bacteria have evolved to become resistant
to antibiotics | |-------------|---------------------------------|--| | | | Describe ways of reducing the development of antibiotic resistant bacteria | | | | Evaluate the use of antibiotics in agriculture | | 5. | Genes, DNA and chromosomes | Define and recognize diagrams of DNA, genes and chromosomes | | | | Describe the structure and function of DNA | | | | Describe the advantages of understanding the human genome | | l 6. | Selective breeding | Describe the process of selective breeding in plants and animals | | | | Explain the impact of selective breeding | | | | Evaluate the use of selective breeding in food plants and
domesticated animals | | 17. | Genetic engineering (Part 2) | Describe the process of producing a genetically modified organism | | | | Evaluate the use of genetic engineering | #### 18. Sex determination - Construct and interpret diagrams to show how sex is inherited - Interpret family tree diagrams to explain the pattern of inheritance #### 19. Evidence for Evolution (Part 1) - Describe some of the ways fossils are produced - Explain how this and other evidence gives us information about the development of life on earth - Explain why we cannot be certain about how life on earth began # **Unit 20 Organic Chemistry (HT)** | Lesson
number | Lesson question | Pupils will learn | |------------------|-------------------------|---| | 1. | Fractional distillation | Describe how crude oil is separated into fractions | | | | Describe trends in the physical and chemical properties
of the fractions of crude oil | | | | Describe uses for the different fractions of crude oil | | 2. | Crude oil and alkanes | Describe the composition of crude oil | | | | Define and recognise hydrocarbons and recall their general formula | | | | Draw and name the first four hydrocarbons | | | | Describe trends in physical properties of the
hydrocarbons | | 3. | Cracking | Explain why cracking is necessary | | | | Describe the process and products of cracking | | | | Describe the test for alkenes and its positive result | | | | Represent cracking using equations | • A review of the key ideas from the first 4 lessons of the organic chemistry unit ### 5. Uses of hydrocarbons - Write equations for the complete combustion of hydrocarbons, identifying oxidation - Describe uses for the alkenes produced in cracking | Lesson
number | Lesson question | Pupils will learn | |------------------|-------------------------|--| | 1. | Infrared | Identify variables to change, measure and control to test a hypothesis | | | | Collect and record data | | | | Process data collected and use it to inform a conclusion | | 2. | Wave properties | Identify the features of a longitudinal and transverse waves | | | | Describe the production of longitudinal and transverse waves | | | | Compare light and sound waves | | 3. | Refraction | Describe the effect of refraction at material interfaces Explain the process of refraction | | 4. | Combined science review | Identifying key misconceptions across the combined science and physics only aspect of the topic Apply understanding from the unit to exam questions | | | | Apply understanding from the unit to exam questions | | 5. | Measuring the speed of waves in solids | Explain the steps taken in measuring the speed of waves in solids Process data appropriately Describe how to minimise error in the readings | |----|--|---| | 6. | Electromagnetic spectrum (Part 2) | (Higher tier) explain why each wave is suitable for the application Describe the effect of different substances on Electromagnetic (EM) waves Describe some of the dangers of EM waves Draw conclusions from secondary data on the risks and consequences of exposure to radiation | | 7. | Measuring the speed of waves in water | Explain the steps taken in measuring the speed of waves in water Process data appropriately Describe how to minimise error in the readings | | 8. | Electromagnetic spectrum (Part 1) | Describe properties of the Electromagnetic (EM) spectrum waves Describe uses of each type of wave | ### 9. Calculations with waves - Calculate frequency from diagrams or given information - Make and record measurements to calculate the speed of sound in air - Use the wave equation to calculate speed, frequency or wavelength # **Unit 22 Chemical analysis (HT)** | Lesson
number | Lesson question | Pupils will learn | |------------------|------------------------------|---| | 1. | Chromatography | Describe how to correctly use chromatography to separate mixtures | | | | Interpret chromatograms to determine the contents of a provided mixture | | 2. | Testing gases | Describe the tests for oxygen, carbon dioxide, hydrogen
and chlorine and their positive results | | | | Write and balance chemical equations to represent
some of the reactions. | | 3. | Pure and impure formulations | Identify pure and impure substances using diagrams or data | | | | Describe how to test for purity | | | | | | 4. | Interpreting chromatograms | Identify mistakes in practical set up and suggest how to
rectify them | |----|----------------------------|---| | | | Interpret chromatography data, identifying pure
substances and mixtures | | | | Calculate Rf values and using significant figures appropriately | | 5. | Review (Part 1) | A review of the key ideas from the first 4 lessons of the
analysis unit | ### **Unit 23** Chemistry of the atmosphere (HT) | Lesson
number | Lesson question | Pupils will learn | |------------------|-----------------|---| | 1. | Climate change | Describe potential consequences of climate change | | | | Define the carbon footprint in a range of contexts | | | | Suggest ways of reducing carbon footprints in different
contexts and why actions to reduce carbon footprints
may be limited | | 2. | Review (Part 2) | Review of global warming and the source and problems
caused by named atmospheric pollutants | | 3. | Review (Part 1) | Review of changes to the atmosphere and the greenhouse effect | | 4. | Alice Wilson | A look at the work of geologist Alice Wilson and her
contribution to our understanding of the evolution of
the Earth | | 5. | The Greenhouse Effect | Describe the greenhouse effect | |----|-----------------------|---| | | | Describe the reasons for and the impacts of increasing
greenhouse gases on the temperature of the Earth's
atmosphere | | | | Evaluate the strength of the evidence for the link
between CO2 levels and global temperature rise | | 6. | Maths Skills | Describe and explain patterns in graphs Recap maths skills such as mean calculation | | 7. | Pollutants | Describe how carbon monoxide, soot, sulphur
dioxide
and nitrogen oxides are produced and released into the
atmosphere | | | | Predict the products of the combustion of a fuel given appropriate information | | | | Describe the problems caused by these pollutants | #### 8. The Earth's atmosphere - Compare the composition of Earth's early atmosphere with its current composition - Describe and explain the changes in the composition of the atmosphere over Earth's history - Evaluate different theories about the Earth's early atmosphere - Describe and explain the formation of limestone, coal, crude oil and natural gas # **Unit 24 Using Resources (HT)** | Lesson
number | Lesson question | Pupils will learn | |------------------|-----------------------------------|--| | 1. | Safe drinking water | Distinguish between pure and potable water | | | | Describe and explain the steps involved in the treatment
of safe drinking water | | | | Test water for pH and dissolved solid content, and
calculate the concentration of dissolved solids | | 2. | Exam skills: Compare and evaluate | Exam skills lesson focusing on the command verbs
'compare' and 'evaluate' | | 3. | Wastewater treatment | State components of wastewater that can cause problems in the environment | | | | Describe how wastewater is treated to make it safe to
release into the environment | | | | Compare the treatments of waste, ground and salt
water in terms of ease of producing potable water | | 4. | Review lesson | Review the combined science content | | 5. | Life cycle assessments | Describe some ways of reducing our use of finite resources | |-----------|-------------------------------------|--| | | | Evaluate ways of reducing our use of limited resources | | | | Carry out life cycle assessments given appropriate information | | 6. | Case study: Kitty Hach Darrow | A look at the work of Kitty Hach Darrow on water purification methods | | 7. | Required practical on potable water | Describe methods of producing potable water from salty water | | | | Describe how to carry out the distillation of a water sample | | | | Describe the differences between the water samples
before and after distillation and how to test for these | | 8. | Finite resources | State ways in which natural products are supported or replaced by man-made products | | | | Extract and interpret information in charts, graphs and tables | | | | Evaluate the use of finite and renewable resources | | 9. | Phytomining and bioleaching | |----|-----------------------------| |----|-----------------------------| - Describe the processes of phytomining and bioleaching to extract metals - Compare alternative methods of metal extraction using information given - Link the processes to displacement and energy change graphs #### 10. The importance of recycling - Describe ways of recycling - Describe the impacts of recycling in terms of environmental impact and sustainable development