
Computing
Key Stage 4
Curriculum map

Key Stage 4 Computing - Curriculum Map - Version 3.0, 28 September 2021

Philosophy1.
Six underlying attributes at the heart of
Oak’s curriculum and lessons.

Lessons and units are
 so that pupils build on what they

already know to develop powerful knowledge.

knowledge and
vocabulary rich

Knowledge is and mapped in a
 format so that pupils make meaningful

connections.

sequenced
coherent

Our curriculum enables schools to tailor
Oak’s content to their curriculum and context.

�exible

Our curriculum is through
rigorous application of best practice and the
science of learning.

evidence informed

We prioritise creating a curriculum by
committing to diversity in teaching and teachers,
and the language, texts and media we use, so all
pupils feel positively represented.

diverse

Creating an curriculum that addresses
the needs of all pupils is achieved to accessibility
guidelines and requirements.

accessible

Units2.
KS4 Computing is formed of 15 units and this is the recommended sequence:

Unit Title Recommended
year group

Number of lessons

1 Data Representation Year 10 9

2 Computer Systems Year 10 12

3 Networks Year 10 6

4 Security Year 10 7

5 Impacts on society Year 10 7

6 Algorithms Year 10 11

7 Programming 1: Sequence Year 11 5

8 Programming 2: Selection Year 11 6

9 Programming 3: Iteration Year 11 5

10 Programming 4: Subroutines Year 11 6

11 Programming 5: Strings and lists Year 11 10

12 Programming 6: Dictionaries and data�les Year 11 12

13 Databases and SQL Year 11 5

14 HTML Year 11 6

15 Object-oriented programming Year 11 5

Lessons3.
Data RepresentationUnit 1 9 Lessons

Lesson
number Lesson question Pupils will learn

1. What is representation?
In this lesson, we will consider two-state systems, such
as bulbs and switches, and investigate how combining
these in groups provides more combinations. Finally, we
will learn how this relates to computers, and will be
introduced to binary.

2. Number bases
In this lesson, we will use decimal representation to
explore the concept of place values in number bases
and the values of digits. Then, we will explore the
representation of binary values, and converting these
back to decimal.

3. Binary maths
In this lesson, we will discover how to perform binary
shifts, binary addition and develop an understanding of
the term 'over�ow'.

4. Hexadecimal In this lesson, you will be introduced to the hexadecimal
number system and learn how to convert between
hexadecimal and decimal numbers. We will also learn
why hexadecimal is used.

5. What can you remember?
In this lesson, we will recap our previous learning on
data representation within this unit to see how much we
can remember. We will review number bases, binary
maths and hexadecimal.

6. Representing text
In this lesson, we will look at character coding systems.
First, we will consider character coding systems that you
might have come across before, such as semaphore and
Morse code, then we will be introduced to ASCII, a
standard coding system for representing text. Next, we
will learn about the need for Unicode to extend ASCII.
Finally, we will learn how to work out the size of a plain
text �le.

7. Representing bitmap images
In this lesson, we will learn how bitmap images are
represented in binary. We will learn about resolution, bit
depth and how to calculate the �le size of a bitmap
image.

8. Representing sound In this lesson, we will look at sound and think about how
it could be represented for storage or transmission. We
will investigate the e�ect of sound waves in the air and
how this relates to speakers and microphones. We will
sample a short sound wave in order to understand this
representation and how it can be improved on. We will
also calculate representation size from sample rate, size,
and duration.

9. Units of measurement
In this lesson, we will look at units of measurement and
learn how to convert between these units.

Computer SystemsUnit 2 12 Lessons
Lesson
number Lesson question Pupils will learn

1. Computer systems and system software
In this lesson, we will discover two types of computer
systems: general purpose and embedded. Following
this, we will explore the need for system software to
facilitate communication between software and
hardware in computer systems. We will explain the role
of an operating system in controlling a computer while it
is running.

2. Introduction to the CPU
In this lesson, we will be introduced to the CPU and von
Neumann architecture. We will learn about the
individual components of the CPU and their roles in
computation, along the way �nding out about von
Neumann and his theories that form the basis of
modern computer architecture.

3. The FDE cycle
In this lesson, we will extend our knowledge of the
components that make up the CPU by introducing the
fetch-decode-execute cycle (FDE). We will observe a
program running and will connect the parts of the CPU
to their role in executing instructions.

4. Main memory In this lesson, we will be introduced to main memory,
RAM and ROM, as well as cache. This lesson builds on
the core knowledge from the previous lesson about CPU
components.

5. Secondary storage
In this lesson, we will be introduced to secondary
storage and take an in-depth look at solid-state storage.
We will discover the need for secondary storage,
through assessing the devices we have learnt about
already. By the end of the lesson, we will be able to
explain how solid-state storage works, and describe the
advantages and disadvantages of such devices.

6. Optical and magnetic storage
In this lesson, we will build on what we learnt in the
previous 'Secondary Storage' lesson; this lesson involves
exploring optical and magnetic storage devices. We will
learn how each type of storage operates, and explain
how data is written and read from each device. We will
then actively rank the storage device in a number of key
areas of comparison.

7. Selecting a storage device In this lesson, we will systematically compare and select
storage devices for a given situation. The second half of
the lesson explores the limits of physical storage and
how cloud storage can �ll the gaps. We will examine
cloud storage and explore questions about the impacts
of cloud storage.

8. Computer speci�cations
In this lesson, we will learn how to evaluate a computer
based on its speci�cations. We will discover the factors
that limit a CPU's performance: clock speed, cache, and
the number of cores. The end of this lesson will involve
us choosing the right computer for a given task.

9. Logic gates
In this lesson, we will discover logic gates: the building
blocks of processors at the heart of a computer system.
Through the activities we will build an understanding of
how logic gates are used to address real-world
problems.

10. Logic problems
In this lesson, we will be introduced to the concept of
three-input logic problems, and will be taught how to
construct a three-input logic diagram, truth table, and
expression.

11. Assembly language programming I In this lesson, we will learn how to write and debug our
own assembly language program. The lesson will build
us up to this task, �rst modelling how to translate a
piece of Python code into assembly language and
examining the types of commands used in assembly
language.

12. Assembly language programming II
In this lesson, we will complete one last project for the
unit: we will be given a set of requirements and tasked
with designing an assembly language program to meet
the requirements.

NetworksUnit 3 6 Lessons
Lesson
number Lesson question Pupils will learn

1. What are networks?
In this lesson, we will be introduced to computer
networks and will learn about the di�erent pieces of
computer hardware involved in creating computer
networks. We will then identify some of the advantages
and disadvantages of using computer networks in the
modern world.

2. Basic networks
In this lesson, we will be introduced to the ways that
computers can be connected together in a network that
is either wired or wireless. We will be introduced to MAC
addresses and relate this to the need for having unique
identi�ers for every device on a network.

3. Real-world networks
In this lesson, we will further develop our understanding
of networks. We will look at the three main types of
networks, LAN, WAN, and PAN, and at the di�erent
topologies that these networks can use in their
design.We will carry out an activity in which we will plan
a business network to meet the requirements of a
�ctional company, 'Fabgadget Inc.'.

4. Con�guring networks In this lesson, we will compare peer-to-peer networks
with client-server networks. We will also build and
con�gure three networks using Packet Tracer.

5. The IP Suite and packet switching
In this lesson, we will get to know application protocols
and the TCP/IP model. Finally, we will understand how
data travels through a network.

6. Network speed and performance
In this lesson, we will look at how we measure network
speed and performance, and what some of the key
considerations are when designing networks, to ensure
that they can function as well as possible. We will also
learn about network broadcast tra�c and how this
a�ects network performance, and about the use of
virtual LANs as a way to control the impact of broadcast
tra�c. Finally, we will look at the di�erent ways and
reasons that criminals attack computer networks, and
what methods we have to defend ourselves against
these attacks.

SecurityUnit 4 7 Lessons
Lesson
number Lesson question Pupils will learn

1. The cost of cybercrime
In this lesson, we will explore the di�erence between
cybersecurity and network security and understand that
although networks are wonderful inventions, they can
make an organisation vulnerable to attack. Through
interactive activities we will gain a sense of the size of
the problem and learn how important it is that we
understand a hacker's motivation and take the subject
seriously.

2. Non-automated cybercrime
In this lesson, we will distinguish between non-
automated and automated cybercrime. We will be
introduced to the idea that humans are the weakest link
in the security chain before exploring di�erent types of
social engineering.

3. Automated cybercrime
In this lesson, we will explore terms and techniques
related to automated cybercrime and the vulnerabilities
of a network or software that can make companies or
individuals vulnerable to such attacks.

4. Fighting �re with �re In this lesson, we will discover di�erent ways to protect
software systems. This will include approaches to design
and approaches to access.

5. Network defence
In this lesson, we will �nd out about ways to protect
network systems from cybercrime. We will learn about
the importance of network security before looking at a
number of ways to achieve network security.

6. Where is the danger?
In this lesson, we will begin to understand how
companies can and do test their own vulnerability to
cybercrime.

7. Being part of the solution
In this lesson, we will explore di�erent careers available
in cybersecurity before taking an end of unit quiz.

Impacts on societyUnit 5 7 Lessons
Lesson
number Lesson question Pupils will learn

1. How does technology impact us?
In this lesson, we will be introduced to the �ve broad
areas of impact (i.e. privacy, legal, ethical,
environmental, and cultural). We will identify and
discuss the impact areas through genuine examples.
Finally, we will begin to understand the legal impact of
technology speci�cally, and work through an example
relating to the Data Protection Act (1998).

2. The law, data protection and copyright
In this lesson, we will further exercise our knowledge
about data protection and clarify the de�nition of the
word 'stakeholder' and examples of impact that a
speci�c technology has had on them. We will then learn
about the relationship between data protection, General
Data Protection Regulation (GDPR), and the right to be
forgotten. Finally, we will learn about copyright, Creative
Commons licensing and comparing open source and
proprietary software.

3. Freedom of Information and Computer
Misuse

In this lesson, we will be introduced to the Freedom of
Information Act, and given the opportunity to study
genuine examples. We will also learn about the
Computer Misuse Act and categorise case studies by the
di�erent levels of o�ence.

4. Cultural impacts
In this lesson, we will understand what the term 'cultural
impact' means. We will learn about downtime and its
e�ect on businesses and individuals and examine the
concept of 'digital divide' and work through examples of
its impact. Finally, we will analyse the cultural
implications of the growing use of mobile technology
and the responsibility of stakeholders in mitigating any
risks explore globalisation.

5. Privacy and surveillance In this lesson, we will discover the reality and limitations
of privacy and surveillance. We will learn the laws that
protect us directly, and others that enable the security
services to protect us from harm. We will then think
about the tension that exists between these two sets of
laws. In addition, we will consider the di�erent
technology that we encounter in our daily lives and the
privacy implications of these. Finally, we will learn about
how intrusive social media is in its harvesting of data,
and become more informed about the data that they
are making available through our engagement with
technology, as well as the, environmental impacts of
social media.

6. Environmental impact
In this lesson, we will discover the reality of technology's
impact on the environment and about how technology,
if utilised strategically, can be used to protect the
environment and can be a preserver rather than a
destroyer.

7. Ethical impact
In this lesson, we will review what the word 'ethical'
means generally. We will then be introduced to the main
ethical impacts of technology, and engage in activities to
help them become more aware of how important acting
ethically is.

AlgorithmsUnit 6 11 Lessons
Lesson
number Lesson question Pupils will learn

1. Computational thinking
In this lesson, we will be introduced to three
computational thinking techniques: decomposition,
abstraction, and algorithmic thinking. We will explore
how these skills can be applied when solving a wide
range of problems, both computer-based and in their
everyday lives.

2. Representing algorithms
In this lesson, we will be developing �ow charts. This
lesson assumes that learners have already covered the
�ow chart lesson in the KS4 Programming unit, although
this lesson can also be used to introduce the �ow chart
symbols if required.

3. Tracing algorithms
In this lesson, we will be shown examples of tracing a
Python program and a �ow chart. Trace tables are great
for walking through an algorithm and are often used to
locate logic errors

4. Linear search In this lesson, we will be introduced to one of two
searching algorithms we need to know about: linear
search. We will go over the steps of carrying out a linear
search, and perform a linear search in real life and with
a sample of data.

5. Binary search
In this lesson, we will be introduced to binary search: the
second searching algorithm we need to know about. We
will go over the steps of carrying out a binary search and
perform a binary search with playing cards and with a
sample of data.

6. Comparing searching algorithms
In this lesson, we will compare the features of linear
search and binary search and the suitability of each
algorithm in di�erent contexts. We will also interpret the
code of both algorithms in Python, as well as analysing
the e�ciency of two implementations of the linear
search algorithm.

7. Bubble sort
In this lesson, we will learn the �rst sorting algorithm in
this unit: bubble sort. We will discuss why and where
sorting is used in real life, become familiar with
performing a bubble sort on a set of data, and
investigate the e�ciency of bubble sort.

8. Insertion sort In this lesson, we will explore another sorting algorithm:
insertion sort. Some exam boards do not require
learners to know insertion sort, so do check the
speci�cation �rst. We will start by discussing how to sort
objects in real life, which will help us to describe
something akin to an insertion sort.

9. Coding sorting algorithms
In this lesson, we will analyse and evaluate code for
bubble sort and insertion sort in Python, as well as
comparing di�erent implementations of the bubble sort
algorithm.

10. Merge sort
In this lesson, we will explore the �nal sorting algorithm
in this unit: merge sort. We will start by considering how
we might go about combining two groups of sorted
items into one sorted group before being taken through
the steps of one merge of a merge sort.

11. Algorithms review
In this lesson, we will practise and cement our
knowledge of what we they have learnt in the
algorithms unit. The worksheets contain a range of
questions on �ow charts, searching algorithms, and
sorting algorithms that will help prepare us for the
summative assessment for the unit.

Programming 1: SequenceUnit 7 5 Lessons
Lesson
number Lesson question Pupils will learn

1. Translators
In this lesson, we will learn that computers need clear
and precise instructions in order to perform the
expected task. We will also be taken on a journey from
machine code to high-level languages in order to
discover how a computer interprets instructions.

2. Sequence
In this lesson, we will be introduced to a Python IDE. We
will learn about the function of an IDE and why
programmers use these to write programs. We will be
given some simple code to predict, run, investigate, and
modify. Whilst we take our �rst steps in Python
programming, we will also learn about common errors
and error types.

3. Variables
In this lesson, we will �nd out about variables. We will
learn about the purpose of variables, but also the
technical aspects of creating variables to a uniform
standard. Variable declaration is not used in Python, so
a wider look at this through other programming
languages will help us gain an insight into its meaning.

4. Input In this lesson, we will start to add interactivity to our
programs by using the input() function. Whilst learning
about input, we will be introduced to functions and data
validation techniques. These will be covered in more
detail later on in the course.

5. Flowcharts
In this lesson, we will focus on interpreting and creating
�owcharts. We will use our knowledge of writing simple
sequences and subroutines to follow a �owchart, and
write the code that it represents. We will be given time
to write our own simple �owcharts in order to practise
using the symbols that we have learnt during the lesson.
This is an introduction to �owchart design and will be
built upon throughout the unit.

Programming 2: SelectionUnit 8 6 Lessons
Lesson
number Lesson question Pupils will learn

1. Randomisation
In this lesson, we will be introduced to the concept of
random numbers using Python documentation. We will
determine what the random module is capable of, and
how random numbers can be generated in Python. In
computer science, random numbers are something that
you are likely to use regularly. They are also used in
areas such as cryptography, while pseudorandom
numbers are used in video games, modelling, and
simulations.

2. Arithmetic expressions
In this lesson, we will understand the rules of operator
precedence when evaluating arithmetic expressions. We
will be reminded of BIDMAS, before investigating code
that uses various arithmetic expressions. This lesson will
prepare us for the next lesson, where we will begin to
use conditions in programming.

3. Selection In this lesson, we will move on to the next big
programming construct: selection. We will be introduced
to it initially through a �owchart that demonstrates how
a condition can be used to control the �ow of execution
in a program. We will then learn about de�nitions for
logical expressions and conditions. A short activity has
been included to allow us to grasp how logical
expressions evaluate. Next, we will complete a PRIMM
activity where we investigate and modify a chatterbot.

4. Selection challenge
In this lesson, we will complete the 'make' part of
PRIMM. We will complete an activity to create a joke
machine. This will allow us to apply our new knowledge
to a new, but similar scenario.

5. Logical expressions
In this lesson, we will deepen our understanding of
logical expressions by introducing the operators AND
and OR. It will begin with a Parson's Problem to check
our understanding of selection. It will then move on to
an unplugged activity that introduces AND and OR. We
will walk through code, and investigate it before writing
our own logical expressions.

6. Nested selection In this lesson, we will be introduced to the concept of
nesting 'if statements'. We will walk through some basic
nested statements to check our understanding. We will
then follow the PRIMM approach and investigate a
'guess the animal' game. We will then modify the game
to improve the functionality of it.

Programming 3: IterationUnit 9 5 Lessons
Lesson
number Lesson question Pupils will learn

1. While loops
In this lesson, we will investigate the world of iteration in
programming. We will learn how to create and use a
while loop in Python.

2. Trace tables
In this lesson, we will learn what a trace table is and how
to use one. Trace tables help check logic errors in a
program and help us learn how to read and follow
programs.

3. For loops
In this lesson, we will be introduced to 'for loops'. For
loops allow us to iterate through a sequence. We will
�nd out how to create and use a for loop in this lesson.

4. Data validation
In this lesson, we will develop our understanding of data
validation by applying data validation through iteration.

5. Pseudocode In this lesson, we will learn how to write our own
pseudocode. We will also complete a challenging project
that we will need to design using pseudocode before
creating in Python.

Programming 4: SubroutinesUnit 10 6 Lessons
Lesson
number Lesson question Pupils will learn

1. Subroutines
In this lesson, we will formalise our de�nition of a
subroutine. We will �nd out why they are used in
programming and we will also learn how to pass values
to them.

2. Functions
In this lesson, we will explore how to create our own
functions. Functions are a type of subroutine that allow
us to return a value. We have used them before when
we have used code like print() and input(). We will also
explore the di�erence between a function and
procedure.

3. Scope
In this lesson, we will learn about the scope of variables.
When a variable is initialised within a subroutine it
cannot be easily accessed and modi�ed by other
subroutines. This lesson will teach us about the di�erent
levels of scope and show us how to access variables that
are initialised within subroutines.

4. XOR In this lesson, we will be introduced to a new operator
called XOR. We will discover how an XOR works before
writing a function to perform the XOR operation.

5. Structured programming
In this lesson, we will be introduced to the paradigm:
structured programming is programming. This lesson
will also demonstrate how we can apply the paradigm to
our own programs.

6. Create a program
In this lesson, we will follow the structured
programming approach to create our own program.

Programming 5: Strings and listsUnit 11 10 Lessons
Lesson
number Lesson question About the lesson

1. GUIs Pupils will learn

In this lesson, we will learn how to create a program that
uses a Guizero, which is a third party module that
enables us to use Python code to create windows,
buttons and more. We will also learn that GUI stands for
Graphical User Interface.

2. String handling I Pupils will learn

In this lesson, we will learn about string handling
techniques that can be used in Python.

3. String handling II Pupils will learn

In this lesson, we will further explore di�erent string
handling techniques that can be used in Python.

4. String handling III Pupils will learn

In this lesson, we will create a program that uses some
of the string handling techniques that we have learnt in
the lessons 'String handling I' and 'String handling II'.

5. Arrays and lists Pupils will learn

In this lesson, we will be introduced to the data
structures: arrays and lists. We will then de�ne them
and explain the di�erences between the two. We will
then focus on lists in Python. We will use lists to create a
'Simon says...' game, which randomly selects
instructions from a list of items.

6. List methods Pupils will learn

In this lesson, we will explore some common list
methods through the creation of a program that
populates a deck of cards. We will also learn how lists
can be returned from a function.

7. Sense HAT I Pupils will learn

In this lesson, we will learn about the world of the Sense
HAT, a physical device that sits on top of a Raspberry Pi
computer and can be used to sense the environment.

Guidance warnings

Equipment requiring safe usage.

8. Sense HAT II Pupils will learn

In this lesson, we will continue to explore the Sense HAT
and will complete 3 small projects that will demonstrate
the di�erent capabilities of the HAT.

9. 2D Arrays and lists Pupils will learn

In this lesson, we will learn about 2D arrays and lists. We
will discover new syntax for creating and using them in
our programs.

10. 2D Lists challenge Pupils will learn

In this lesson, we will use what we have learnt about 2D
lists in previous lessons to complete a challenging
project.

Programming 6: Dictionaries and data�lesUnit 12 12 Lessons
Lesson
number Lesson question Pupils will learn

1. Records and dictionaries
In this lesson, we will be introduced to two new data
structures: a record and a dictionary. The focus of this
lesson is on records and how these can be created and
used in Python to form a database. We will be shown
how to use a dictionary as a record before creating a
'database' using dictionaries within a list.

2. Dictionary challenge
In this lesson, we will have the opportunity to use a
dictionary data structure in a new context. We will
create a Caesar cipher encryption program using a
dictionary as the cipher wheel. This mini project will
allow us to develop our programming skills through an
appropriate challenge.

3. Reading text �les
In this lesson, we will be introduced to text �les. The
focus will be on reading text �les, and how the data
from a text �le can be used within a program. We will be
stepped through the key methods that are used for
reading text �les in Python, before we complete two text
�le challenges.

4. Writing to text �les In this lesson, we will continue to explore text �les by
looking at how to write text �les and how to append text
�les. Live coding will be used to introduce the two new
concepts and mini challenges are used to allow us to
test our understanding of them.

5. Work with CSV �les
In this lesson, we will learn what CSV �les are and how
to use them. We will also learn how to read data into a
list and a 2D list. Finally, we will complete a challenge
working with the data.

6. Write to CSV �les
In this lesson, we will learn how to write to CSV �les. We
will work with 1D and 2D lists, before converting them to
string and writing them to CSV �les. There are lots of list
challenges this lesson, which should help to enhance
skills in preparation for the �nal project.

7. Being a programmer
In this lesson, we will discuss the good habits of a
programmer before being reminded of why some of the
key aspects are good habits. We will also hear from
industry programmers about their own good practice.
We will then look at alternative approaches to
programming solutions.

8. Battle boats In this lesson, we will be introduced to the �nal
programming project of this course: programming a
game called Battle Boats.

9. Battle boats design
In this lesson, we will design our Battle Boats game
using either Pseudocode or Flowchart in preparation for
programming the solution in the next lesson: 'Battle
boats code'.

10. Battle boats code
In this lesson, we will code our Battle Boats game.
Demonstrations and solutions are provided to give us
support if needed, and it is likely to take more than an
hour to complete the coding.

11. Battle boats test
In this lesson, we will focus on creating and using a test
plan to test our Battle Boats program.

12. Battle boats evaluate
In this lesson, we will complete an evaluation of our
Battle Boats program.

Databases and SQLUnit 13 5 Lessons
Lesson
number Lesson question Pupils will learn

1. Database essentials
In this lesson, we will explore the key terminology
required to be able to use SQL to search and update a
relational database. Together we will step through the
key concepts using a music database as an example. We
will complete the lesson by gaining some hands on
experience of using a database management system.

2. SQL searches
In this lesson, we will use the music database from the
previous lesson, 'Database essentials', to write our �rst
SQL commands to access and manipulate the data.

3. Insert, update, delete
In this lesson, we will explore INSERT, UPDATE, and
DELETE queries, before being given the opportunity to
implement these queries using our music database.

4. Swim challenge (Part 1)
In this lesson, we will use our SQL skills to build,
interrogate, and update a database to manage
swimming lessons.

5. Swim challenge (Part 2) In this lesson, we will use our SQL skills to build,
interrogate, and update a database to manage
swimming lessons.

HTMLUnit 14 6 Lessons
Lesson
number Lesson question Pupils will learn

1. Introduction to HTML
In this lesson, we will take our �rst footsteps in web
development. We will start by gaining an understanding
of what a website is and how it ends up in the web
browser. Then we will edit content in a website before
creating our very own web page from scratch.

2. Images and links
In this lesson, we will look at the design considerations
necessary to make a website as accessible as possible.
We will then add images and links to a wesbite.

3. Mini project
In this lesson, we will build upon a laser tag website by
designing and adding new pages.

4. Introduction to CSS
In this lesson, we will focus on the look and feel of a
laser tag website by applying CSS (a cascading style
sheet) to it.

5. DIVs and classes In this lesson, we will look at how we can make use of a
DIV tag to apply CSS to di�erent sections of each page
on a website.

6. The CSS box model
In this lesson, we will learn how to apply the CSS Box
Model to achieve the exact appearance we would like to
on a webpage.

Object-oriented programmingUnit 15 5 Lessons
Lesson
number Lesson question Pupils will learn

1. Programming Paradigms
In this lesson, we will focus on how a programmer
chooses to write programs. We will investigate how they
use a programming paradigm, which is a set of
conventions, a set pattern or set way of doing things.

2. Classes and Objects
In this lesson, we will learn how to create a class in
Python and then use that class to create objects.

3. Creating a class
In this lesson, we will use our experience with object-
oriented programming to step into the shoes of a video
game programmer. We will create a class that will hold
the information about monsters in a puzzle game.

4. Inheritance
In this lesson, we will learn about a key principle of
object-oriented programming - Inheritance. We will use
it to create new monster classes for the Monster Quest
puzzle game. These new classes will inherit all the
attributes and methods of the original monster class
and add some new ones all their own!

5. Exploring OOP
In this lesson, we will explore a program written using
OOP. We will use our experience to �rst investigate and
then modify the program. Finally, we will add a new
subclass to the program and apply the principle of
inheritance.

Learn More4.
Contents

Section number Section content

1. Coherence and �exibility

2. Knowledge organisation

3. Inclusive and ambitious

4. Application through software

5. Motivation through learning

6. Key stage 4 computing curriculum themes

7. Key stage 4 computing unit summaries

1. Coherence and �exibility

The computing curriculum is structured in units. For the units to be coherent, the lessons within them must be taught in order.
However, the curriculum is �exible in terms of the order in which you teach units within a year group, except for
programming, where concepts and skills rely on prior knowledge and experiences.

2. Knowledge organisation

The curriculum applies to the National Centre for Computing Education’s computing taxonomy. This has been developed
through a review of the KS1-4 computing programme of study, and the GCSE and A Level computer science speci�cations,
across all awarding bodies. All learning outcomes can be described through a top-level taxonomy of ten topics, ordered
alphabetically as follows:

Algorithms

Computer Networks

Computer Systems

Creating Media

Data & Information

Design & Development

E�ective use of tools

Impact of technology

Programming

Safety & Security

The taxonomy categorises and organises content into strands which encapsulate the discipline. Whilst all strands are present
at all phases, they are not always taught explicitly.

3. Inclusive and ambitious

We want Oak to be able to support all children. Our units will be pitched so that pupils with di�erent starting points can access
them. Our lessons will be sequenced so that each builds on prior learning. Our activities will be sca�olded so all children can
succeed. We use unplugged or real world activities to unpack di�cult concepts in computing as part of a semantic wave of
learning. We also use a range of sca�olding approaches when teaching programming, ranging from copying code, exploring
some commands or functions, �xing code with bugs to solving speci�c problems with code.

4. Application through software

We need pupils to be thinking during their lessons - both to engage with the subject and to strengthen memory of what is
being learnt. Some of our lessons require practical application of concepts and skills on a computer using appropriate
software. We supplement our lessons with guidance on how to use such software to reinforce the learning from the lesson.

5. Motivation through learning

We believe that computing is inherently interesting, and seek to motivate pupils through the subject matter. Where possible,
we draw on real world experiences to provide an engaging viewpoint on computing concepts. Every pupil should have the
opportunity to implement their skills and knowledge and ultimately feel a sense of achievement. We provide opportunities for
pupils to be creative and solve problems by building their own programmes and applications for example.

6. Key stage 4 computing curriculum themes

Below are the key stage 4 GCSE Computing and Non-GCSE Computing units organised by 10 curriculum themes.

Algorithms

Computing Systems (Year 10)

Algorithms (Year 10)

Programming (Year 11)

Programming

Computing Systems (Year 10)

Networks (Year 10)

Algorithms (Year 10)

Programming (Year 11)

Object-oriented programming (Non-GCSE Computing course)

HTML (Year 11)

Databases and SQL (Year 11)

Data and Information

Data Representation (Year 10)

Computer Systems (Year 10)

Databases and SQL (Year 11)

Spreadsheets (Non-GCSE Computing course)

Computing Systems

Computer Systems (Year 10)

Network

Networks (Year 10)

Creating Media

Project Management (Non-GCSE Computing course)

Media (Non-GCSE Computing course)

Design and Development

Programming (Year 11)

Object-oreinted programming (Year 11)

HTML (Year 11)

E�ective use of tools

Project management (Non-GCSE Computing course)

Spreadsheets (Non-GCSE Computing course)

IT and the world of work (Non-GCSE Computing course)

Media (Non-GCSE Computing course)

Impact of Technology

Impacts on society (Year 10)

IT and the world of work (Non-GCSE Computing course)

Safety and Security

Security (Year 10)

IT and the world of work (Non-GCSE Computing course)

7. Key stage 4 computing unit summaries

Unit title Summary of unit content

Data Representation Binary, Hex Conversions & Ops Text Images & Sound Data
Capacity Compression

Computer Systems Components Architecture Storage Software Boolean logic

Networks Components Classi�cations Protocols Layers

Security Vulnerabilities Forms of Attack Techniques for: Identi�cation
and protection

Impacts Ethical Legal Environmental (inc. privacy and cyber security)

Algorithms Tracing & Exec. Representation Searching Sorting E�ciency

Comp. Thinking

Programming Tracing & Exec. Prog. constructs Data types, structs Modularity
Quality Translators

Databases & SQL Relational databases SQL (Select, Insert, Update, Delete)

HTML Images, links, CSS (DIVS, classes and box model)

Object Oriented Programming Classes, Objects, Attributes, Methods, Encapsulation,
Inheritance, Structured programming, Software design

