# Maths Key Stage 4 - Foundation 

Curriculum map

## 1. Philosophy

## Six underlying attributes at the heart of Oak's curriculum and lessons.

## Lessons and units are knowledge and

 vocabulary rich so that pupils build on what they already know to develop powerful knowledge.Knowledge is sequenced and mapped in a coherent format so that pupils make meaningful connections.

Our flexible curriculum enables schools to tailor Oak's content to their curriculum and context.

Our curriculum is evidence informed through rigorous application of best practice and the science of learning.

We prioritise creating a diverse curriculum by committing to diversity in teaching and teachers, and the language, texts and media we use, so all pupils feel positively represented.

Creating an accessible curriculum that addresses the needs of all pupils is achieved to accessibility guidelines and requirements.


## 2. Units

## KS4 Maths is formed of 63 units and this is the recommended sequence:

| Unit Title | Recommended year group | Number of lessons |
| :---: | :---: | :---: |
| 1 Directed Numbers | Year 10 | 4 |
| 24 Rules of Number | Year 10 | 4 |
| 3 Types of numbers | Year 10 | 4 |
| 4 Rules of indices (numbers) | Year 10 | 4 |
| 5 Collecting like terms, simplifying | Year 10 | 4 |
| 6 Expand and simplify brackets | Year 10 | 4 |
| 7 Rules of Indices | Year 10 | 4 |
| 8 Solving equations 1 (One step, Two Step and Brackets) | Year 10 | 4 |
| 9 Solving equations 2 (Simple algebraic fractions) | Year 10 | 4 |

10 Substitution and Rearranging formulae11 Reflection Year 1012 Rotation and Enlargement
13 Pythagoras Theorem 1
14 Pythagoras Theorem 215 Factors Multiple and PrimesYear 104
16 Venn Diagrams Year 10 ..... 4
17 HCF and LCM
18 Rounding and EstimatingYear 10Year 104
21 Solve Inequalities and Represent on Number Line44
Year 10 19 Factorising (single bracket)20 Factorise and solve a quadratic ( $\mathrm{a}=1$ )

| 22 | Linear Sequences | Year 10 | 4 |
| :---: | :---: | :---: | :---: |
| 23 | Fraction equivalents | Year 10 | 4 |
| 24 | Fractions 1 (adding and subtracting) | Year 10 | 4 |
| 25 | Fractions 2 (multiplying and dividing) | Year 10 | 4 |
| 26 | Fraction Change | Year 10 | 4 |
| 27 | Simple Graphs | Year 10 | 4 |
| 28 | Straight Line Graphs ( $\mathrm{y}=\mathrm{mx}+\mathrm{C}$ ) | Year 10 | 4 |
| 29 | Quadratic Graphs 1 ( $a=1$ ) | Year 10, Year 11 | 4 |
| 30 | Percentages | Year 10 | 4 |
| 31 | Percentage increase and decrease | Year 10 | 4 |
| 32 | Repeated Percentage Change | Year 10 | 4 |
|  | FDP Equivalents | Year 10 | 4 |


| 34 | Decimals | Year 10 | 4 |
| :---: | :---: | :---: | :---: |
| 35 | Ratio 1 | Year 10 | 4 |
| 36 | Area and Perimeter | Year 10 | 4 |
| 37 | Circles | Year 10 | 4 |
| 38 | Parts of circles 1 (Semi and quarter circles) | Year 10 | 4 |
| 39 | Volume and Surface Area 1 (Prisms) | Year 10 | 4 |
| 40 | Angle Facts | Year 11 | 4 |
| 41 | Parallel Lines and Polygons 1 | Year 11 | 4 |
| 42 | Polygons 2 (Interior and Exterior) | Year 11 | 4 |
| 43 | Standard Form (Writing and converting) | Year 11 | 4 |
| 44 | Standard Form 4 Operations | Year 11 | 4 |
|  | Ratio 2 (Ratio and Fractions/Direct Proportion/Best Buy) | Year 11 | 4 |


| 46 | Revise - Solving Equations | Year 11 | 8 |
| :---: | :---: | :---: | :---: |
| 47 | Simultaneous Equations (Linear) | Year 11 | 4 |
| 48 | Frequency charts (Data Collection, Bar and Pictograms) | Year 11 | 4 |
| 49 | Averages (From a list and tables, Stem and Leaf) | Year 11 | 4 |
| 50 | Charts and Tables (Pie Chart and Two way tables) | Year 11 | 4 |
| 51 | Scatter diagrams and Frequency trees | Year 11 | 4 |
| 52 | Probability 1 (Scale and equally likely events) | Year 11 | 4 |
| 53 | Probability 2 (Sample space, Venn diagrams and experimental) | Year 11 | 4 |
| 54 | Probability 3 (Tree diagrams) | Year 11 | 4 |
| 55 | Straight Line Graphs 2 (Parallel Lines) | Year 11 | 4 |
| 56 | Travel Graphs | Year 11 | 4 |
|  | Compound measures | Year 11 | 4 |


| 58 Translate and Vectors 1 | Year 11 |
| :--- | :--- | 4

## 3. Lessons

Unit 1 Directed Numbers

| Lesson <br> number | Lesson question | Pupils will learn |
| :--- | :--- | :--- |
| 1. | Adding directed numbers | - In this lesson, we will recap adding directed (+ -) <br> numbers using visual representations such as double <br> sided counters to aid understanding. |
| 2. | Subtract directed numbers | - In this lesson, we will recap subtracting directed (+ -) <br> numbers using visual representations such as double <br> sided counters to aid understanding. |
| 3. | - In this lesson, we will recap multiplying and dividing <br> directed numbers using visual representations such as <br> double sided counters to aid understanding. |  |
| 4. Order of Operations divide directed numbers | - In this lesson, we will recap using the Order of <br> Operations with directed numbers. |  |

## Unit 24 Rules of Number

Lesson

number

Lesson question

## Pupils will learn

1. Adding and subtracting two integers

- In this lesson, we will revisit how to add and subtract large integers using the column method.

2. Multiplying two integers
3. Dividing two integers

- In this lesson, we will revisit how to divide any two integers using the bus stop method.

4. Four operations

- In this lesson, we will revisit a variety of problems that involve using the four operations. We will model solutions using the column method and the bus stop method.
Lesson
number $\quad$ Lesson question $\quad$ Pupils will learn

1. Square and cube numbers

- In this lesson, we will investigate the properties of square and cube numbers. We will model what these number categories are using visual models of arrays and stacked cubes, and will pracise calculating squaring and cubing a number.

2. Square roots and cube roots
3. Higher powers

- In this lesson, we will learn about using indices greater than 3 . We will make sense of numbers written with an index greater than 3, and learn how to calculate the value of those numbers.

4. Higher roots

- In this lesson, we will investigate higher roots of numbers. This is an extension of square and cube roots. We will make sense of numbers written with higher roots, and learn how to calculate the value of those numbers.

| Lesson number | Lesson question | Pupils will learn |
| :---: | :---: | :---: |
| 1. | Multiply powers | - In this lesson we will learn how to apply and obey index laws when multiplying numbers with powers. |
| 2. | Divide powers | - In this lesson we will learn how to apply and obey index laws when dividing numbers with powers. |
| 3. | Powers of powers | - In this lesson we will learn how to apply index laws when raising numbers with powers to another power. |
| 4. | Manipulating powers | - In this lesson, we will learn how to manipulate powers to change bases. We will learn how to identify when this is and is not possible. |


| Lesson <br> number | Lesson question |
| :--- | :--- |
| 1. | Simplify Expressions by Collecting Like <br> Terms |

## Pupils will learn

- In this lesson, we will introduce the vocabulary 'like terms' and group numbers and algebraic terms together in expressions to make them simpler.


## 2. Simplify Expressions by Multiplying Terms

- In this lesson, we will simplify the appearance of an expression that uses multiplication of algebraic terms. We will also investigate how we can multiply two algebraic terms.

3. Expand a Term over a Single Bracket

- In this lesson, we will rewrite an expression by multiplying out brackets that involve algebraic terms. We will also look at generating algebraic expressions using area models.


## 4. Expand a Term over a Single Bracket including Powers

- In this lesson, we will rewrite an expression by multiplying out brackets that involve algebraic terms. We will look at cases where we are multiplying two algebraic terms together, requiring the use of indices. We will also look at generating algebraic expressions using area models.

| Lesson <br> number | Lesson question |
| :--- | :--- |
| 1. | Expand 2 brackets and simplify <br> expressions (Part 1) |

Pupils will learn

- In this lesson, we will expand 2 brackets using algebra tiles and/or a grid e.g. where $n \geq 14(n x \pm 5)+6(n x \pm 3)$.

- In this lesson, we will expand 2 brackets using algebra tiles and/or a grid e.g. where $n \geq 14(n x \pm 5)+6(n x \pm 3)$.

3. Expand and simplify double brackets

- In this lesson, we will expand and simplify double brackets using a grid or other method e.g. $(x+2)(x+3)$.

4. Expand and Simplify Double Brackets
(Coefficient of $x$ Greater than 1)

- In this lesson, we will expand and simplify double brackets. We will look at specific cases where the coefficient of $x$ is greater than 1 .


## Unit 7 Rules of Indices

Lesson $\quad$ Lesson question
number

1. Multiplication Law for indices

- In this lesson, we will investigate the Multiplication Law for indices. We will derive this law and use it to simplify expressions.

2. Division Law for indices

- In this lesson, we will investigate the Division Law for indices. We will derive this law and use it to simplify expressions.

3. Power Law for Indices

- In this lesson, we will investigate the Power Law for indices. We will derive this law and use it to simplify expressions.

4. Combining Index Laws

- In this lesson, we will be applying all three Index Laws to help us simplify more complicated expressions.


## Unit 8 Solving equations 1 (One step, Two Step and Brackets)

| Lesson <br> number | Lesson question | Pupils will learn |
| :--- | :--- | :--- |
| 1. Solving one-step equations | - In this lesson, we will solve one step equations including <br> those that first need to be formed from a word problem. |  |
| 2. | Solving two-step equations | In this lesson, we will solve two step equations including <br> those that first need to be formed from a word problem. |
| 3. | In this lesson, we will solve equations with brackets <br> including those that first need to be formed from a word <br> problem. |  |
| 4. | Solving equations with brackets <br> both sides | In this lesson, we will solve equations with an unknown <br> on both sides including those that first need to be <br> formed from a word problem. |

## Unit 9 Solving equations 2 (Simple algebraic fractions)

| Lesson number | Lesson question | Pupils will learn |
| :---: | :---: | :---: |
| 1. | Solve equations that first involve simplification $2(x+3)+5 x=15$ | - In this lesson, we will solve equations that first need some type of simplification. |
| 2. | Solve simple algebraic fractions (equal to a number) | - In this lesson, we will solve equations with algebraic fractions equal to a number. |
| 3. | Solving algebraic fractions (equal to $\mathbf{x}+$ <br> a) | - In this lesson, we will solve equations with an algebraic fraction equal to a number and an unknown value. |
| 4. | Solving algebraic fractions (one fraction equal to another) | - In this lesson, we will be solving algebraic fractions where one fraction is equal to another fraction. |

Lesson $\quad$ Lesson question
number

1. Substitute a positive term into a formula

- In this lesson, we will be substituting positive values into a variety of formulae and calculating the result.


## 2. Substitute a negative term into a formula

- In this lesson, we will be substituting negative values into a variety of formulae, and calculating the result.

3. Change the subject of a formula

- In this lesson, we will change the subject of a formula in which the term appears once.

4. Change the subject of a formula with squares and square roots

- In this lesson, we will change the subject of a formula where the formula involves squares and square roots and the term only appears once.

| Lesson number | Lesson question | Pupils will learn |
| :---: | :---: | :---: |
| 1. | Reflecting in a given horizontal or vertical line (Part 1) | - In this lesson, we will reflect shapes in horizontal or vertical lines on a grid. We will explore the terminology of transformations and practise reflecting shapes across a line. |
| 2. | Reflecting in a given horizontal or vertical line (Part 2) | - In this lesson, we will reflect shapes across horizontal or vertical lines on a coordinate grid. We will extend our knowledge of reflections by using mathematical vocabulary to describe reflections in the coordinate plane. |
| 3. | Reflecting in a given diagonal line (Part 1) | - In this lesson, we will reflect shapes on a square grid using a diagonal line of reflection rather than a horizontal or vertical line. |
| 4. | Reflecting in a given diagonal line (Part 2) | - In this lesson, we will reflect shapes across mirror lines with a gradient of 1 on a coordinate grid. We will also describe reflections using mathematical vocabulary. |


| Lesson <br> number | Lesson question | Pupils will learn |
| :--- | :--- | :--- |
| 1. | Rotate an Object around a Given Point | - In this lesson, we will rotate any object around a given <br> centre of rotation. |
| 2. | Rotate an Object around a Given <br> Coordinate | - In this lesson, we will rotate any object around a given <br> centre of rotation, and describe rotations on coordinate <br> grids. |
| 3. | Enlarge an Object with a Positive Scale <br> Factor | - In this lesson, we will enlarge objects by a given scale <br> factor, and identify scale factors. |
| 4. | Enlarge an Object with a Positive Scale <br> Factor from a Given Coordinate | • In this lesson, we will enlarge objects by a given scale <br> factor, and describe enlargements on coordinate grids. |


| Lesson number | Lesson question | Pupils will learn |
| :---: | :---: | :---: |
| 1. | Know and Understand Pythagoras' theorem | - In this lesson, Pythagoras' Theorem will be introduced. We will learn what the theorem is, and practise skills we will use to calculate missing sides such as squaring and finding the square root of a number. |
| 2. | Find the length of the hypotenuse | - In this lesson, Pythagoras' Theorem will be applied to find the hypotenuse of a right-angled triangle. |
| 3. | Find the length of the shorter side | - In this lesson, Pythagoras' Theorem will be applied to find a shorter side of a right-angled triangle. |
| 4. | Mixture of Finding a Missing Length | - In this lesson, we will apply Pythagoras' Theorem to find any missing length of a right-angled triangle. |


| Lesson <br> number | Lesson question | Pupils will learn |
| :--- | :--- | :--- |
| 1. | Use Pythagoras' theorem to show that <br> a triangle is right-angled | - In this lesson, we will apply Pythagoras' Theorem to <br> determine if a triangle is right-angled. This is known as <br> the converse of Pythagoras' Theorem. |
| 2.Use Pythagoras' Theorem to find the <br> length of a line segment | - In this lesson, we will use Pythagoras' Theorem to find <br> the length of a line segment that joins two pairs of <br> coordinates |  |
| 3.Use Pythagoras' Theorem with <br> Isosceles Triangles | In this lesson, we will learn how to apply Pythagoras' <br> Theorem to isosceles triangles to find missing side <br> lengths or angles. |  |
| 4.Apply Pythagoras' Theorem to two <br> triangles | In this lesson, we will apply Pythagoras' Theorem to two <br> triangles that share a common side. |  |

## Lesson

 number1. Multiples and Factor Pairs

## Pupils will learn

- In this lesson, we will recap the fundamental concepts of multiples and factors of a single number. We will explore the concepts using bar models and dot arrays.
- In this lesson, we will recap identifying prime numbers. We will define prime numbers and explain their properties.

3. Prime Factor Decomposition
4. Using Prime Factor Decomposition

- In this lesson, we will revisit the concept of using factor trees to rewrite a number as a product of its prime factors.
- In this lesson, we will investigate how we can manipulate numbers when they are written as a product of their prime factors. We will learn how to idenitfy various properties of numbers by interrogating them as a product of prime factors.


## Unit 16 Venn Diagrams

| Lesson <br> number | Lesson question | Pupils will learn |
| :--- | :--- | :--- |
| 1.Understand Venn diagrams, sort data <br> and label | - In this lesson, we will learn about the universal set and <br> members of a set. We will interpret different <br> representations (2 circles only) of a Venn diagram for <br> given listed information, including sorting and labelling <br> data |  |
| 2. Find and understand the intersection of | - In this lesson, we will learn how to find the intersection <br> of two sets of data and use the correct set notation (2 <br> circles only). We will learn how to sort information into a <br> Venn diagram, where calculations are involved. |  |

3. Find and understand the union of 2 sets

- In this lesson, we will learn how to find the union of two sets and use the correct set notation, recapping intersection and looking at Venn diagrams with more than 2 circles

4. Complement of a set

- In this lesson, we will learn what the complement of a set is and use the correct set notation. We will practise finding the compliment of a set.
Lesson $\quad$ Lesson question
number

1. Simple LCM and HCF

- In this lesson, we will learn about the terms 'Lowest Common Multiple' and 'Highest Common Factor'. We will learn how to determine lowest common multiples for small integers by listing and comparing their factors and multiples.

2. Finding the LCM

- In this lesson, we will find the 'Lowest Common Multiple' of two integers using a Venn diagram to compare their prime factors.

3. Finding the HCF
4. Applying LCM and HCF

- In this lesson, we will answer problem solving questions involving determining the lowest common multiple and highest common factor of two integers. We will model solutions to a range of problems including worded questions.


## Unit 18 Rounding and Estimating

| Lesson <br> number | Lesson question | Pupils will learn |
| :--- | :--- | :--- |
| 1. | Round to two decimal places | - In this lesson, we will learn how to round numbers to <br> two decimal places using place value and number lines. |
| 2. | Round up to three significant figures | - In this lesson, we will learn how to round numbers to 1, <br> 2 or 3 significant figures |

3. Limits of accuracy

- In this lesson, we will learn how to find the upper and lower bounds of a rounded value and use this information in simple calculations

4. Estimating answers

- In this lesson, we will learn how to estimate the answer to a calculation by rounding all the values to one significant figure before calculating.

| Lesson <br> number | Lesson question |
| :--- | :--- |
| 1. Factorising Single Brackets |  |
| 2. | Factorising Single Brackets: Factor out <br> a letter |

## Pupils will learn

- In this lesson, we will learn how to identify whether we can take an expression and factorise it using a pair of brackets and our knowledge of common factors.
- In this lesson, we will learn how to identify whether we can take an algebraic expression and factorise it using a pair of brackets and our knowledge of common factors.

3. Factorise Single Brackets: Factor a number and a letter

- In this lesson, we will learn how to identify whether we can take an algebraic expression and factorise it using a pair of brackets and our knowledge of common factors. The examples will include common factors where algebraic coefficients are greater than 1.

4. Factorising single brackets (more complicated expressions)

- In this lesson, we will learn about how to factorise more complex expressions in to single brackets.

| Lesson <br> number | Lesson question |
| :--- | :--- |
| 1. Factorise a quadratic |  |
| 2. | Factorise a quadratic (difference of $t$ <br> squares) |
| 3. | Solve a quadratic equation by <br> factorising |
| 4. | Simplifying an algebraic fraction by <br> factorising |

- In this lesson, we will learn how to factorise a quadratic expression into two brackets

In this lesson, we will learn how to factorise a quadratic expression as a difference of two squares
factorising

- In this lesson, we will learn how to simplify algebraic fractions by factorising and identifying common factors in both the numerator and denominator.


## Unit 21 Solve Inequalities and Represent on Number Line

| Lesson <br> number | Lesson question | Pupils will learn |
| :--- | :--- | :--- |
| 1. | Representing Inequalities on a Number <br> Line | - In this lesson, we will learn to represent inequalities on a <br> number line. |
| 2. | - In this lesson, we will learn to solve simple inequalities <br> by using a number line. |  |
| 3.Solve Inequalities with Unknowns on <br> Both Sides | - In this lesson, we will learn to solve inequalities with <br> unknowns on both sides. |  |
| 4. | Solving Inequalities Involving Algebraic <br> Fractions | - In this lesson, we will learn to solve inequalities which <br> include fractions. |


| Lesson <br> number | Lesson question | Pupils will learn |
| :--- | :--- | :--- |
| 1. Write the nth term of a linear sequence | - In this lesson, we will investigate what a linear sequence <br> is, and how to calculate an algebraic rule to generate the <br> sequence, referred to as the nth term. |  |

2. Find terms of a linear sequence

- In this lesson, we will investigate how to take an algebraic rule and generate a sequence, or specific terms within a sequence.

3. Triangular and Fibonacci style sequences

- In this lesson, we will be learning about triangular and Fibonacci style sequences. We will use arrays to aid visualising how sequences expand.

4. Simple quadratic and cubic sequences

- In this lesson, we will investigate how terms change when a sequence is quadratic. In other words, it is of the form $a x^{2}+b x+c$. We will also investigate cubic sequences.
Lesson
number $\quad$ Lesson question $\quad$ Pupils will learn

1. Equivalent Fractions

- In this lesson, we will calculate equivalent fractions using knowledge of multiples and factors.

2. Simplifying Fractions

- In this lesson, we will learn how to write a fraction in its simplest form using our knowledge of multiples and factors.

3. Comparing two fractions

- In this lesson, we will use our knowledge of equivalent fractions to compare them and organise pairs of fractions in ascending and descending order of size using the 'greater than' and 'less than' symbols.

4. Ordering three or more fractions

- In this lesson, we will use our knowledge of equivalent fractions to compare them and organise groups of fractions in ascending and descending order of size using the 'greater than' and 'less than' symbols.


## Unit 24 Fractions 1 (adding and subtracting)

Lesson $\quad$ Lesson question
number $\quad$ Pupils will learn

1. Adding and subtracting fractions < 1

- In this lesson, we will learn how to add and subtract proper fractions with different denominators.

2. Adding mixed numbers

- In this lesson, we will learn how to add mixed numbers to other mixed numbers or fractions with different denominators

3. Subtracting mixed numbers

- In this lesson, we will learn how to subtract mixed numbers from other mixed numbers or fractions with different denominators

4. Mixed fraction addition and subtraction problems

- In this lesson, we will learn how to add and/or subtract fractions and/or mixed numbers in problems presented in a non-standard form


## Unit 25 Fractions 2 (multiplying and dividing)

Lesson $\quad$ Lesson question
number

1. Multiplying a fraction by an integer

- In this lesson, we will multiply a fraction by an integer, including mixed numbers and negative values.

2. Multiplying a fraction by a fraction

- In this lesson, we will multiply a fraction by a fraction, including mixed numbers and negative values.

3. Dividing a fraction by an integer

- In this lesson, we will divide a fraction by an integer, including mixed numbers and negative values.

4. Dividing a fraction by a fraction

- In this lesson, we will divide a fraction by a fraction, including mixed numbers and negative values.

| Lesson number | Lesson question | Pupils will learn |
| :---: | :---: | :---: |
| 1. | Fraction of an amount | - In this lesson, we will investigate methods to find a fraction of an amount without using a calculator. |
| 2. | Increasing and decreasing by a fraction of an amount | - In this lesson, we will find a fraction of an amount. We will use this information to increase or decrease the original quantity by this amount. |
| 3. | Find the whole when given a fraction of an amount | - In this lesson, we will learn that given the fraction of an amount, we can find what the original quantity was. We will investigate ways to do this. |
| 4. | Application of fraction of an amount skills | - In this lesson, we will investigate a mixture of problems involving finding the fraction of an amount. |

Lesson $\quad$ Lesson question
number

1. Draw and recognise graphs of the form $\mathbf{y}=\mathbf{k x}$

- In this lesson, we will be drawing graphs in the form $y=k x$. We will identify features of these graphs and learn how to identify these graphs from their visual properties.

2. Draw graphs of the form $y=m x+c$ by using a table of values

- In this lesson, we will be drawing graphs in the form $y=m x+c$. We will use the equation of the line to determine a set of coordinates using a table of values, which we will then plot.

3. Draw graphs of the form ax+by =c by using a table of values

- In this lesson, we will be drawing graphs in the form $a x+b y=c$ through drawing a table of values. We will investigate how we can use our knowledge of number bonds and inspection to help us calculate a table of values more easily.

4. Use graphs to solve simple equations including simultaneous equations

- In this lesson, we will investigate how to solve a pair of simultaneous equations by ploptting them and interpreting the coordinates at the point of intersection.
Lesson
number

1. Find the gradient of a line

## 2. Find the equation of a straight line using $y=m x+c$

## Pupils will learn

- In this lesson, we will revise the term 'gradient' and learn how to identify and calculate the gradient of a plotted line using two pairs of coordinates. We will compare lines with different gradients.
- In this lesson, we will find the equation of a straight line using $y=m x+c$. We will use coordinates taken from a plotted straight line to help us calculate the gradient, then use a method of substitution to find the equation of the line.

3. Find the intercept and gradient from a line given in any form

- In this lesson, we will investigate different strategies to find the intercept and gradient for a linear graph. Each method will utilise the equation of the line.

4. Using gradient to solve problems with parallel lines

- In this lesson, we will use the gradient of a line to solve problems with parallel lines. We will investigate the relationship between different linear graphs with the same gradient.
Lesson $\quad$ Lesson question
number $\quad$ Pupils will learn

1. Plot simple quadratic equations

- In this lesson, we will plot graphs of simple quadratic equations and recognise some of their properties. We will determine the general features of quadratic graphs.

2. Plot other quadratic equations

- In this lesson, we will plot graphs of quadratic equations of the form $a x^{2}+b x+c$ and recognise some of their properties. We will investigate how different coefficients alter the appearance of the quadratic curve.

3. Solving Quadratic Equations Graphically

- In this lesson, we will interpret graphs of quadratic equations in order to find their solutions. We will investigate the key features of quadratic graphs that help us identify their solutions.

4. Identify and interpret roots, intercepts and turning points of quadratic graphs

- In this lesson, we will recognise the roots, y-intercept and turning points on a graph of a quadratic function. We will define these key terms and investigate quadratic curves to help label them with this new vocabulary.

| Lesson <br> number | Lesson question | Pupils will learn |
| :--- | :--- | :--- |
| 1.Simple percentages without a <br> calculator | - In this lesson, we will learn how to calculate simple <br> percentages of an amount without a calculator |  |
| 2.Decimal multiplier method to find <br> percentages of an amount | - In this lesson, we will determine and use a decimal <br> multiplier to find the percentage of an amount |  |
| Fractions greater than 1 and |  |  |
| percentages above 100\% | - In this lesson, we will find fractions greater than 1 of an <br> amount and percentages above 100\% of an amount |  |
| Express one number as a fraction or <br> percentage of another without a <br> calculator | - In this lesson, we will learn how to write one quantity as <br> a fraction or percentage of another |  |


| Lesson number | Lesson question | Pupils will learn |
| :---: | :---: | :---: |
| 1. | Increase and Decrease an Amount by a Percentage | - In this lesson, we will learn about increasing or decreasing an amount by a percentage determining and using a decimal multiplier. |
| 2. | Calculate Percentage Change | - In this lesson, we will learn about how to determine the proportional percentage increase or decrease between two values |
| 3. | Reverse Percentages | - In this lesson, we will learn how to calculate reverse percentages. We will learn how to take a given quantity as a percentage of a whole, and use it to calculate the value of the whole. |
| 4. | Simple Interest | - In this lesson, we will learn about calculating simple interest. We will investigate what the term means, and learn how to calculate it and solve problems. |


| Lesson <br> number | Lesson question | Pupils will learn |
| :--- | :--- | :--- |
| 1. | Repeated percentage increase | - In this lesson, we will learn how to apply a repeated <br> percentage increase by using multipliers. |
| 2. | Repeated percentage decrease | - In this lesson, we will learn how to apply a repeated <br> percentage decrease by using multipliers |
| Repeated percentage increase and <br> decrease | - In this lesson, we will learn how to apply a repeated <br> percentage increase and decrease by using multipliers |  |
| Solve problems with repeated <br> percentage change | - In this lesson, we will learn how to calculate how many <br> repeated percentage increases or decreases are needed <br> to reach a given amount |  |

Lesson $\quad$ Lesson question
number

1. Simple fraction, decimal and percentage equivalents

- In this lesson, we will learn how to calculate simple fraction, decimal and percentage equivalent values. We will learn how to convert between fractions, decimals and percentages.
- In this lesson, we will learn how to use non-calculator methods to convert fractions, decimals and percentages

3. Convert fractions to decimals and percentages with a calculator
4. Change percentages to fractions and decimals

- In this lesson, we will learn how to use a calculator to convert fractions to decimals and percentages. We will learn what calculator operations will perform these calculations.
- In this lesson, we will use non-calculator methods to convert percentages to a fraction and decimal

| Lesson number | Lesson question | Pupils will learn |
| :---: | :---: | :---: |
| 1. | Add and subtract decimals | - In this lesson, we will learn how to add and subtract decimal numbers using column addition and subtraction methods. |
| 2. | Multiplication of two decimals | - In this lesson, we will learn how to multiply decimals by integers, and decimals by decimals. We will compare and use the column method and the grid method in this lesson. |
| 3. | Division of a decimal number by an integer | - In this lesson, we will learn how to divide any decimal by an integer. We will use the bus stop method for this lesson. |
| 4. | Decimal divided by decimal | - In this lesson, we will learn how to divide any decimal by another decimal using the bus stop method. |

## Unit 35 Ratio 1

4 Lessons

```
Lesson
number Lesson question
```


## Pupils will learn

1. Simplifying ratios

- In this lesson, we will learn how to simplify up to three part ratios, including those with different units of measure.
- In this lesson, we will learn how to use and interpret bar models to divide a quantity in a given ratio and solve problems.
- In this lesson, we will learn how to find a part of a ratio when given another part using bar models and solve similar problems in context

4. Find the total or difference given a part

- In this lesson, we will learn how to find the total or difference between numbers in a given ratio, when provided with one part of that ratio. We will model solutions using part-part-whole bar models and solve problems in context.


## Lesson <br> number Lesson question <br> 1. Area of rectangles, parallelograms and triangles

## Pupils will learn

- In this lesson, we will practise using the formulae to calculate the area of rectangles, parallelograms and triangles. We will model how to determine which measures within a diagram are appropriate to use for the formulae.


## 2. Area of a trapezium

- In this lesson, we will practise applying the formula to calculate the area of a trapezium. We will consider examples that use different trapezia in different orientations to help us determine what measures are suitable to use in our formula.
- In this lesson, students will find the area of compound shapes by dividing the shape up into simpler more easily recognisable shapes and finding the sum of their parts.

4. Perimeter of polygons and compound shapes

- In this lesson, students will find the perimeter of polygons and compound shapes by dividing the shape up into simpler more easily recognisable shapes and finding the sum of their perimeters.
Lesson $\quad$ Lesson question
number

1. Find the circumference of a circle

- In this lesson, we will investigate how to calculate the circumference of a circle. We will explore the formula used for this calculation, and practise finding the circumference from a given radius or diameter.


## 2. Find the Diameter or Radius when given the Circumference

- In this lesson, we will find the diameter or radius of a circle when given the circumference. This lesson will involve rearranging the formula for the circumference of a circle.

3. Find the Area of a Circle
4. Find the radius and diameter when given the area

- In this lesson, we will investigate how to find the area of a circle. We will practise finding the area of circles and semicircles when given either the radius or the diameter.
- In this lesson, we will learn how to find the radius or diameter of a circle when given the area. This lesson will involve rearranging the formula for the area of a circle.
Lesson
number $\quad$ Lesson question $\quad$ Pupils will learn

1. Know the parts of a circle

- In this lesson, we will identify parts of a circle by their mathematical names

2. Find the area of a semicircle and quarter circle

- In this lesson, we will find the area of a semicircle and quarter circle in terms of pi or to 3 significant figures

3. Find the area of a sector

- In this lesson, we will find the area of sectors in terms of pi or to 3 significant figures

4. Find the radius or diameter given the area of a sector

- In this lesson, we will find the radius or diameter given the area of a sector

Lesson number<br>Lesson question<br>1. Volume of Cubes and Cuboids

## Pupils will learn

- In this lesson, students will calculate the volume of cubes and cuboids. We will introduce the appropriate formulae for these calculations and practise determining which measures within a diagram will be appropriate to use in our formulae.
- In this lesson, students will calculate the volume of triangular prisms. We will introduce the appropriate formulae for these calculations and practise determining which measures within a diagram will be appropriate to use in our formulae.
- In this lesson, students will calculate the surface area of cubes and cuboids. We will introduce the appropriate formulae for these calculations and practise determining which measures within a diagram will be appropriate to use in our formulae.

4. Finding the Surface Area of Triangular Prisms

- In this lesson, students will calculate the surface area of triangular prisms. We will introduce the appropriate formulae for these calculations and practise
determining which measures within a diagram will be appropriate to use in our formulae.

| Lesson <br> number | Lesson question |
| :--- | :--- |
| 1. | Find missing angles around a point and <br> on a straight line |

## Pupils will learn

- In this lesson, we will calculate the missing angles around a point and on a straight line. We will revisit the properties of angles on a straight line and a point, and use this information to help us deduce the value of missing angles in problems.

2. Find missing angles in a triangle

- In this lesson, we will calculate the missing angles in a triangle. We will revisit the properties of angles in a triangle and angles on a straight line to help us deduce the value of missing angles in problems.

3. Find missing angles in a quadrilateral

- In this lesson, we will calculate the missing angles in a quadrilateral. We will revisit the properties of angles in a quadrilateral to help us deduce the value of missing angles in problems.

4. Find missing angles in a special quadrilateral

- In this lesson, we will calculate the missing angles in a trapezium, parallelogram and a kite. We will revisit the properties of these quadrilaterals in order to help us deduce the value of missing angles in diagrams.
Lesson
number
Lesson question

1. Angles in parallel lines with one transversal

## 2. Angles in parallel lines with two transversals

## Pupils will learn <br> Pupils will learn

- In this lesson, we will find missing angles in parallel lines with one transversal
- In this lesson, we will find missing angles in parallel lines with two transversals
- In this lesson, we will calculate the size of a missing exterior angle on a regular and irregular polygon
- In this lesson, we will calculate the number of sides a regular polygon has when given an exterior or interior angle

| Lesson Lesson question |  |
| :--- | :--- |
| number | Pupils will learn |

1. Find missing exterior angles of polygons

- In this lesson, we will calculate missing exterior angles of any regular or irregular polygon.

2. Finding the sum of interior angles in a polygon

- In this lesson, we will calculate the sum of interior angles in polygons, and apply this to find missing angles.

3. Find the number of sides when given the sum of interior angles

- In this lesson, we will find the number of sides of a polygon when given only the sum of interior angles.

4. Find missing angles when two or more polygons are joined

- In this lesson, we will apply regular polygon knowledge to find missing angles when two or more polygons are joined together.

| Lesson <br> number | Lesson question | Pupils will learn |
| :--- | :--- | :--- |
| 1. | Convert large numbers to standard <br> form | - In this lesson, we will convert large ordinary numbers to <br> a standard form number with positive powers of ten. |
| 2. | Convert large standard form numbers <br> to ordinary form | - In this lesson, we will convert standard form numbers <br> with positive powers of ten into ordinary numbers |
| 3. Convert small numbers to standard | - In this lesson, we will convert small ordinary numbers to |  |
| form standard form number with negative powers of ten |  |  |


| Lesson <br> number | Lesson question | Pupils will learn |
| :--- | :--- | :--- |
| 1. | Adding two numbers in standard form | - In this lesson, we will learn how to add any two numbers <br> together in standard form. We will look at initial cases <br> where powers are equal, and move to more complicated <br> cases where powers are different. |
| 2.Subtracting two numbers in standard <br> form | - In this lesson, we will learn how to subtract any two <br> numbers in standard form. We will look at initial cases <br> where powers are equal, and move to more complicated <br> cases where powers are different. |  |
| 3.Multiplying Two Numbers in Standard <br> Form | - In this lesson, we will learn how to multiply any two <br> numbers in standard form. We will model increasingly <br> difficult questions and finish with a worded question |  |
| involving unit conversion. |  |  |

## Unit 45 Ratio 2 (Ratio and Fractions/Direct Proportion/Best Buy)

| Lesson number | Lesson question | Pupils will learn |
| :---: | :---: | :---: |
| 1. | Ratio and fractions | - In this lesson, we will learn how to write ratios as fractions. We will investigate the similarities and differences between both formats. |
| 2. | Compare the cost of two items using the unitary method | - In this lesson, we will compare the cost of two items using the unitary method. We will learn how to reduce ratios to 1 :n using a double number line. |
| 3. | Using direct proportion graphs | - In this lesson, we will learn how to use, interpret, and answer questions from interrogating direct proportion graphs. |
| 4. | Proportion problems | - In this lesson, we will practise using ratio to solve proportion problems. We will model problems and their solutions in worded problems. |


| Lesson <br> number | Lesson question | Pupils will learn |
| :--- | :--- | :--- |
| 1. Solving one-step equations | - In this lesson, we will solve one step equations including <br> those that first need to be formed from a word problem. |  |
| 2. Solving two-step equations | - In this lesson, we will solve two step equations including <br> those that first need to be formed from a word problem. |  |
| 3. In this lesson, we will solve equations with brackets |  |  |
| including those that first need to be formed from a word |  |  |
| problem. |  |  |

5. Solve equations that first involve simplification $2(x+3)+5 x=15$

- In this lesson, we will solve equations that first need some type of simplification.

6. Solve simple algebraic fractions (equal
to a number)

- In this lesson, we will solve equations with algebraic fractions equal to a number.


## 7. Solving algebraic fractions (equal to x + a)

- In this lesson, we will solve equations with an algebraic fraction equal to a number and an unknown value.

8. Solving algebraic fractions (one fraction equal to another)

- In this lesson, we will be solving algebraic fractions where one fraction is equal to another fraction.

| Lesson number | Lesson question | Pupils will learn |
| :---: | :---: | :---: |
| 1. | Solve linear simultaneous equations where one of the coefficients is equal | - In this lesson, we will introduce solving simultaneous equations pictorially, then solve algebraically using subtraction and addition. We will look at cases where the coefficients of either $x$ or $y$ are equal. |
| 2. | Solve linear simultaneous equations where you need to multiply one of the equations | - In this lesson, we will solve simultaneous equations using the visual representation of a bar model to help us derive values for unknowns in linear equations. |
| 3. | Solve linear simultaneous equations where you need to multiply both equations | - In this lesson, we will investigate how to solve simultaneous equation cases where the coefficient of one term is not a multiple or factor of the other. We will use multiplication to find new equations and create common coefficients. |
| 4. | Solve linear simultaneous equations where you need to first rearrange | - In this lesson, we will investigate how to solve simultaneous equation cases where we need to rearrange equations first, followed by using multiplication to ensure coefficients in one equation are factors or multiples of the other. |

## Unit 48 Frequency charts (Data Collection, Bar and Pictograms)

| Lesson number | Lesson question | Pupils will learn |
| :---: | :---: | :---: |
| 1. | Data collection | - In this lesson, we will investigate the concepts of samples and bias when collecting data. |
| 2. | Bar charts | - In this lesson, we will revisit how to draw and interpret bar charts |
| 3. | Composite and multiple bar charts | - In this lesson, we will learn how to draw and interpret composite and multiple bar charts |
| 4. | Pictograms | - In this lesson, we will learn how to draw and interpret pictograms |

## Unit 49 Averages (From a list and tables, Stem and Leaf)

| Lesson <br> number | Lesson question | Pupils will learn |
| :--- | :--- | :--- |
| 1.Find the mean, median, mode and <br> range from a list of numbers | - In this lesson, we will learn how to calculate the mean, <br> median, mode and range from a list of numbers |  |
| 2. | - In this lesson, we will learn how to draw and interpret <br> stem and leaf diagrams. |  |
| 3. | - In this lesson, we will learn how to calculate the mean of <br> a set of data displayed in a frequency table. |  |
| 4erom a frequency table | - In this lesson, we will learn how to calculate the mean of <br> a set of data displayed in a grouped frequency table. |  |

## Unit 50 Charts and Tables (Pie Chart and Two way tables)

Lesson
number $\quad$ Lesson question $\quad$ Pupils will learn

1. Interpret timetables and distance tables

- In this lesson, we will learn how to interpret timetables and distance tables

2. Design and interpret two-way tables

- In this lesson, we will learn how to design and interpret two-way tables. We will model how to solve problems involving two-way tables.

3. Plot and interpret time-series graphs
4. Draw and interpret pie charts

- In this lesson, we will learn how to plot and interpret time-series graphs. We will model how to solve problems using these graphs.

In this lesson, we will learn how to draw and interpret pie charts from frequency tables. We will learn how to calculate angles that represent each proportion of data.

## Unit 51 Scatter diagrams and Frequency trees

| Lesson number | Lesson question | Pupils will learn |
| :---: | :---: | :---: |
| 1. | Plot a scatter graph and describe correlation | - In this lesson, we will learn how to plot a scatter graph. We will also learn about different types of correlation in scatter graphs, and be able to correctly identify correlation patterns in scatter graphs. |
| 2. | Identify and explain outliers from a scatter diagram | - In this lesson, we will learn to identify and explain outliers from a scatter diagram |
| 3. | Use a line of best fit on a scatter graph | - In this lesson, we will learn how to draw and interpret a line of best fit on a scatter graph |
| 4. | Draw and interpret a frequency tree | - In this lesson, we will learn how to draw and interpret a frequency tree diagram. |

Lesson
number $\quad$ Lesson question $\quad$ Pupils will learn

1. Use the language of probability and the probability scale

- In this lesson, we will learn how to apply the vocabulary of probability to scenarios and label the probability scale with words and numbers.
- In this lesson, we will learn how to find the probability of a single, equally likely event using fractions, in a range of contexts including spinners, dice and counters. We will also learn how to use probability notation correctly.
- In this lesson, we will learn how to look at equally likely events and mutually exclusive events and discover the sum of probabilities to aid finding the probability of an event not happening
- In this lesson, we will understand the definitions of outcome, event and trial. We will calculate predicted outcomes based on the results of a trial or experiment.


## Unit 53 Probability 2 (Sample space, Venn diagrams and experimental)

4 Lessons

| Lesson <br> number | Lesson question |
| :--- | :--- |
| 1. | List outcomes in a sample space <br> diagram (two-way table) and calculate <br> probabilities |

Pupils will learn

- In this lesson, we will learn how to construct and interpret sample space diagrams (two-way tables) including calculating probabilities, for a variety of contexts.

2. Calculate experimental probabilities and make predictions (relative frequency)

- In this lesson, we will learn how to record data in a relative frequency table and use the probabilities to make predictions, including scenarios such as spinners or rolling dice.
- In this lesson, we will learn how to calculate probabilities from Venn diagrams with 2 or more sets, including using the correct notation for union, intersect and complement. It is useful to have a knowledge of how to draw Venn diagrams prior to this lesson but this skill is revised.

4. 

Find probabilities from frequency trees

- In this lesson, we will learn how to use frequency trees to find probabilities including revision on how to draw frequency trees given some information.

| Lesson number | Lesson question | Pupils will learn |
| :---: | :---: | :---: |
| 1. | Draw a tree diagram for independent events | - In this lesson, we will learn how to draw tree diagrams and complete missing probabilities in tree diagrams for independent events. |
| 2. | Calculate probabilities of independent events | - In this lesson, we will learn how to calculate probabilities of outcomes for independent events from tree diagrams |
| 3. | Draw a tree diagram for dependent events | - In this lesson, we will learn how to draw tree diagrams and complete missing probabilities in tree diagrams for dependent events. |
| 4. | Calculate probabilities of dependent events | - In this lesson, we will learn how to calculate probabilities of outcomes for dependent events from tree diagrams |

Lesson $\quad$ Lesson question
number

1. Write the equation of a straight line if parallel to a line and passing through (0,n)

- In this lesson, we will investigate how to calculate the equation of a straight line that is parallel to an existing line, and passes through a known point on the $y$-axis.

In this lesson, we will investigate how to calculate the equation of a straight line that is parallel to an existing line, and passes through a known coordinate.
3. Find the equation of a straight line through two given points

- In this lesson, we will investigate how to calculate the equation of a line, given two pairs of coordinates that the line passes through.

4. Interpret gradient and intercept on real life graphs

- In this lesson, we will calculate and interpret the gradient and intercepts on real life graphs. We will draw upon our skills of drawing triangles to calculate gradients.
Lesson number Lesson question Pupils will learn

1. Distance-time graphs

- In this lesson, we will interpret distance-time graphs. We will answer questions regarding how far or how long a journey has been at different points, segments, and overall.

2. Calculate speed from distance time- graphs

- In this lesson, we will calculate speed from distance time-graphs. We will introduce the formula used to calculate this measure, and discuss how to interpret it.

3. Velocity-time graphs

- In this lesson, we will interpret velocity-time graphs. We will discuss the notion of constant speed, and what each measure means.

4. Acceleration from a velocity-time graph

- In this lesson, we will calculate acceleration from a velocity-time graph. We will introduce a formula that aids our calculation, and practise using it to determine different accelerations in velocity-time graphs.
Lesson $\quad$ Lesson question
number

1. Use and apply the speed formula

- In this lesson, we will perform calculations involving speed, distance and time and learn about the units involved.

2. Use and apply the density formula

- In this lesson, we will perform calculations involving mass, density and volume and learn about the units involved.

3. Use and apply the pressure formula

- In this lesson, we will perform calculations involving pressure, force and area and learn about the units involved.

4. Solve simple kinematics problems (velocity, initial velocity and acceleration formulae)

- In this lesson, we will begin to learn about Kinematics, substitute into the SUVAT equations and apply the SUVAT equations to problems.

| Lesson <br> number | Lesson question | Pupils will learn |
| :--- | :--- | :--- |
| 1. | Translate and describe an object given <br> a horizontal or vertical instruction | - In this lesson, we will translate images in horizontal and <br> vertical directions on a squared grid given worded <br> instructions. |
| 2. | Translate and describe a 2D vector | - In this lesson, we will understand the meaning of a 2D <br> vector, and use them to translate objects and describe <br> translations. |
| 3.Represent a column vector as a <br> diagram and using notation | - In this lesson, we will investigate column vectors and <br> their representative diagrams. |  |
| Write a column vector from a diagram | - In this lesson, we will accurately determine a column <br> vector from a given diagram. |  |

## Unit 59 Vectors 2

Lesson $\quad$ Lesson question
number $\quad$ Pupils will learn

1. Add two column vectors (including diagrams) to give a resultant vector

- In this lesson, we will learn how to perform addition using column vectors. We will investigate this process using diagrams.

2. Add and subtract two column vectors to give a resultant vector (Part 1)

- In this lesson, we will practise adding and subtracting
column vectors. We will investigate this process using diagrams.

3. Multiply a vector by a scalar
4. Add and subtract two column vectors to give a resultant vector (Part 2)

- In this lesson, we will add and subtract column vectors. We will model more complicated examples that use multiples of vectors. We will interpret our answers using suitable diagrams.

| Lesson number | Lesson question | Pupils will learn |
| :---: | :---: | :---: |
| 1. | Know the cardinal compass and the three rules of bearings | - In this lesson, we will learn how to identify the points on the cardinal compass and learn the rules of bearings. |
| 2. | Measure the 3-figure bearing between 2 points and find a point when given a 3-figure bearing and length | - In this lesson, we will learn how to measure a 3-figure bearing and use this skill to find a point given a 3 -figure bearing and a length. |
| 3. | When given two points and 2 bearings find a third point | - In this lesson, we will learn how to identify a third point when given two points and two bearings. |
| 4. | Back bearings | - In this lesson, we will learn to find back bearings. This means that given the bearing from $A$ to $B$ we will find the bearing of $B$ from $A$. |


| Lesson <br> number | Lesson question | Pupils will learn |
| :--- | :--- | :--- |
| 1. Faces, Edges and Vertices | - In this lesson, we will learn how to identify and count <br> faces, edges and vertices on 3D shapes. |  |
| 2.Draw plan views and elevations of 3D <br> shapes | - In this lesson, we will draw plan views and elevations of <br> 3D shapes. |  |
| Sketch 3D shapes when given plan and <br> elevation | - In this lesson, we will sketch 3D shapes when given plan <br> and elevation diagrams. |  |
| 4.Use a map scale to work out a length <br> and vice versa | - In this lesson, we will use a map scale to work out an <br> actual length and vice versa. |  |

## Unit 62 Constructions

Lesson $\quad$ Lesson question
number $\quad$ Pupils will learn

1. Construct triangles

- In this lesson, we will accurately construct triangles using a protractor and ruler when given angle and length measurements.

2. Construct a perpendicular bisector

- In this lesson, we will learn how to construct a perpendicular bisector using a compass, ruler, pencil and paper.

3. Construct a perpendicular bisector from a point to a line

- In this lesson, we will learn how to construct a perpendicular bisector from a point to a line using a compass, ruler, pencil and paper.

4. Construct an angle bisector

- In this lesson, we will learn how to construct an angle bisector using a compass, ruler, pencil and paper.

| Lesson number | Lesson question | Pupils will learn |
| :---: | :---: | :---: |
| 1. | Loci around a point | - In this lesson, we will learn how to draw the locus of points around a single point using a compass, ruler, pencil and paper. |
| 2. | Loci from a line | - In this lesson, we will learn how to draw the locus of points that are a given distance from a line segment. We will do this using a compass, ruler, pencil and paper. |
| 3. | Loci from a shape | - In this lesson, we will learn how to draw the locus of points a given distance from a shape. We will do this using a compass, ruler, pencil and paper. |
| 4. | Equidistant from two points | - In this lesson, we will learn how to draw the locus of points equidistant from two given points. We will do this using a compass, ruler, pencil and paper. |

## 4. Learn More

## Contents

| Section number | Section content |
| :--- | :--- |
| 1. | Key stage 4 maths introduction |
| 2. | Coherence and flexibility |
| 3. | Knowledge organisation |
| 4. | Knowledge selection |
| 5. | Inclusive and ambitious |
| 6. | Mopil engagement |
| 7. | Motivation through learning |

## Section number

1. 
2. 
3. 
4. 
5. 

## Section content

Key stage 4 maths introduction

Coherence and flexibility

Knowledge organisation

Knowledge selection

Motivation through learning

## 1. Key Stage 4 Maths Introduction

As mathematics teachers we want our pupils to reach fluency in what we are teaching them. In mathematics, fluency requires a deep understanding of concepts and the ability to apply them flexibly and with automaticity. The mathematics curriculum uses multiple representations to help make connections across concepts to help build a deep conceptual understanding. By making consistent use of the same core representations we will scaffold pupils' thinking to help them understand abstract
mathematical concepts. The curriculum will also include intelligent practice that is designed to help pupils develop automaticity in their mathematics.

We also aim for our pupils to be able to use the precise language of mathematics, as distinct from everyday language. The curriculum will do this by explicitly teaching mathematical vocabulary and introducing core sentence structures with which to express, connect, reason with and apply mathematical structures and ideas.

Finally, we also aim for our pupils to be able to think mathematically. The tasks and activities used in the curriculum teach pupils the components of mathematical thinking: to sort and classify, compare and contrast, specialise and generalise, to make conjectures and to prove them.

Below are the set of principles we have used to build this curriculum, with these ambitions for our pupils in mind.

## 2. Coherence and flexibility

We strive to support schools by offering a maths curriculum that can fit alongside a range of existing structures. However, complete flexibility over unit ordering is impossible due to the cumulative nature of mathematics and the importance of prior knowledge.

We have grouped lessons into units: coherent sequences of 5 or more lessons. Although each lesson can be accessed individually, explicit connections are made to earlier lessons and later lessons in the same unit. This is because the connections between mathematical concepts are so vital to deepening understanding.

## 3. Knowledge organisation

The units in the maths curriculum have been organised by strand. We have also created a set of sequences for pupils targeting different grades at GCSE and who are at different stages in KS4, organised based on the topics that are most useful for the GCSE course.

## 4. Knowledge selection

Our mathematics lessons cover the full scope of the National Curriculum. We have given more time (both in number of lessons and number of units) to those concepts within the National Curriculum that the evidence tells us are foundational to success in maths.

## 5. Inclusive and ambitious

We know the difference it makes when children believe they "can do" maths. We are guided by the principles of the National Curriculum to ensure that every pupil, regardless of starting point, develops their fluency, reasoning and problem solving. Our activities are scaffolded so all children can succeed. Pupils are offered frequent opportunities to be and feel successful in their maths education.

We develop conceptual understanding by always building new understanding on what pupils already know, by representing concepts in different ways, and by making connections between concepts. The mathematics curriculum makes consistent use of the same core representations across year groups to help pupils connect prior learning to new learning. These representations are selected to make key mathematical structures and ideas accessible to all pupils, no matter what their starting points.

To support every child to communicate mathematically, pupils are introduced to core sentence structures with which to express, connect, reason with and apply mathematical structures and ideas.

## 6. Pupil engagement

You learn maths by thinking about maths. Our lessons include mathematical tasks which have multiple solutions. Mathematical thinking is woven into the units using scaffolds and prompts such as 'what is the same and what's different?', 'is it sometimes, always or never true?' and 'which could be the odd one out?'. Throughout the curriculum, all pupils have opportunities to sort and classify, compare and contrast, specialise and generalise, to make conjectures and to prove them.

## 7. Motivation through learning

We believe that mathematics is inherently interesting and that all children are entitled to a genuine experience of mathematics. The tasks and activities that pupils engage with harness innate ways of thinking and develop the habits of mind that are drawn upon when being mathematical. Problem solving is at the heart of every lesson with opportunities to investigate, explore and reason.

